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Abstract 

With the increasing demand for solid solutions for numerous applications in micro- and optoelectronics, magneto-optics, and Lasers, 
the yield in producing extremely homogeneous crystals becomes more and more important. Growth-induced inhomogeneities called 
striations hamper the applications of solid solutions and doped crystals. Thermal striations have widely been regarded as inherent 
problem of crystal growth. They are commonly assumed to be caused by convective instabilities so that reduced convection by 
microgravity or by damping magnetic fields was and is widely employed to reduce thermal striations. Here it will be shown theoretically 
that temperature fluctuations at the growth interface cause striations, and that hydrodynamic fluctuations in a quasi-isothermal growth 
system do not cause striations. The conditions derived from the phase diagram were experimentally established and allowed the growth 
of striation-free crystals of KTal_xNbx03 "KTN" solid solutions for the first time. Hydrodynamic variations from the accelerated 
crucible rotation technique ACRT did not cause striations as long as the growth temperature around 1200°C was controlled within 
0.03°. In the growth of facetted crystals the surface, consisting of regions with different local growth velocities, i.e. macrosteps, may cause 
the macrostep-induced striations. These can be suppressed by controlling the growth mode, by preventing or eliminating macrosteps by 
the faceting transition. 

In specific solid-solution systems the striation problem can be circumvented by approaching the effective distribution coefficient 
kerr -+ I in growth from melts and from solutions. 

The various theoretical aspects and technological solutions of the striation problem wiIJ be reviewed and discussed in this paper. 
© 2005 Elsevier B.V. All rights reserved. 

KeY1Vords: A I. Growth from melts; A I. Segregation; A I. Solid solutions; A I. Striations; A2. Accelerated crucible rotation technique; A2. Growth from 
high-temperature solutions; B2. Nonlinear optic materials 

1. Introduction 

Solid solutions or mixed crystals are special crystals or 
alloys in which one or more lattice sites of the structure are 
occupied by two or more types of atoms, ions, or 
molecules. The statistical distribution of the species 
occupying the same site is in many cases random. However, 
it was theoretically shown by Laves [1] that the distribution 
can deviate- from random in the direction of ordering, 
leading at full ordering to a superlattice or superstructure, 
or it can deviate in the direction of clustering leading in the 
extreme case to unmixing or phase separation. This aspect 
of site distribution and ways to control or modify it by 
annealing will not be discussed here, although it has an 
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impact on the physical properties of metallic alloys and of 
magnetic bubble-domain devices, for example. 

In solid solutions the concentration of the constituents 
can be varied and thus the properties optimized for specific 
applications, so that mixed crystals play an increasing role 
in research and technology. One example is III-V 
semiconductors where the bandgap can be adjusted, along 
with the lattice constant, to match the available substrates 
for epitaxial growth for optoelectronic applications. The 
misfit between substrate and layer is a decisive factor for 
controlling the epitaxial growth mode and thus the epilayer 
(device) performance [2]. Another example are III-V 
compounds for photovoltaic devices where the composi­
tion can be adjusted to optimize successive solar-light 
absorption and thus to maximize solar-cell efficiency as 
well as radiation and temperature resistance [3]. In certain 
cases, properties and effects may be obtained in solid 
solutions which are not observed in the constituents: The 
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Table I 
Homogeneity requirements for applications of solid solutions 

Crystals, substrates, epilayers 

Doped crystals, dependent on function 
Metals and alloys 
Magnetic and magneto-optic crystals and layers 
Semiconductor substrates and layers 
Ga(As,P), (Ga,In)As, (Ga,ln)Sb, (Cd,Hg)Te 
Dieelectrics: Piezo- and pyroelectrics; electro-optic, 
nonlinear-optic and 
Photo refractive crystals; Laser crystals 

/J.x/x 

10-2_10-3 

10-2_10-3 

10-4-10-5 

10-4_10- 5 

phase transition temperature and the related anomaly of 
the dielectric constant may be shifted near to the 
application temperature for electro-optic, nonlinear-optic 
and acousto-optic applications and thus allows develop­
ment of highest-efficiency devices [4,5]. The hardening 
effect of solid solutions is often used to improve the 
mechanical properties of alloys [6]. 

In this paper the bulk fluctuations of concentration of 
the constituents of solid solutions and of dopants will be 
treated with respect to the application-dependent homo­
geneity requirements which are shown for the major 
material classes in Table 1, where the estimated tolerable 
composition (x) variations (L\x) are listed. Corresponding 
to these tolerance limits, analytical methods are to be 
applied or developed in order to assist in the achievement 
of "striation-free" crystals. In addition to the well­
established methods to indicate striations, a colorful 
optical diffraction method has been developed [7] to 
visualize striations, and demonstrated with oxide, doped 
InP, and Si1-xGex crystals. The types of inhomogeneities 
and their origin, and how inhomogeneities can be reduced 
or suppressed completely, will also be discussed. Here we 
define "striation-free" as the degree of homogeneity where 
the inhomogeneity cannot be detected by analytical 
methods or where it is less than required for the specific 
application. An absolute striation-free crystal may neither 
be achieved nor proven. 

There is a strong tendency for fluctuations of the growth 
conditions causing concentration fluctuations vertical to 
the growth direction known as growth bands or striations. 
The suppression of striations is an old problem in crystal 
growth technology, so that several authors have described 
striations as an "intrinsic" or "unavoidable" phenomenon 
in crystal growth [5,8]. 

Based on the segregation analyses for growth from melts 
by Burton, Prim and Slichter (BPS 1953 [9]) and for growth 
from diluted solutions by Van Erk 1982 [10] the role of 
hydrodynamics and temperature as the relevant growth 
parameters will be discussed in Section 3, so that the 
experimental conditions for growth of crystals free of 
thermal striations can be derived. This theoretical result 
will be confirmed in Section 4 by the growth of quasi 
striation-free crystals of solid solutions. 

The macrostep-induced striations are caused by locall~ 
different growth velocities and can be prevented by contre 
of the growth mode [2] which requires the adjustment 0 

several growth parameters as briefly discussed in Section 2. 
Alternative approaches to reduce or eliminate the 

striation problem are discussed in Section 5. They are 
based on achieving an effective distribution coefficient of 
unity which was shown for growth from melts by Mateika 
[II] and for growth from high-temperature solutions by 
Scheel and Swendsen [12]. Finally, in Section 6 novel 
approaches will be discussed which require further testing. 

2. Origin and definitions of striations 

Nearly all crystals have inhomogeneities and striations 
except for line compounds prepared from ultra-pure 
chemicals. Early observations of striations have been 
reported for CaF2 [13] and in semiconductor crystals [14]. 
Hurle [15] has shown for metal and semiconductor crystals 
and Cockayne and Gates [16] for Czochralski-grown oxide 
and fluoride crystals, that striations are caused by 
temperature fluctuations correlated with convective oscilla­
tions when a critical Raleigh number for natural convec­
tion is surpassed, or when there is a lack of symmetry in 
crystal pulling. 

Many compounds like GaAs and LiNb03 are not line 
compounds, but have an existence range, that is they have 
a certain degree of solid solubility with one or both of the 
constituents. This causes a difference between the con­
gruent-melting composition and the stoichiometric compo­
sition. Therefore these crystals show composItion 
variations along the growth direction and as striations, 
depending on the exact growth conditions (melt composi­
tion, growth temperature) and their fluctuations. For GaAs 
and compound semiconductors this is discussed by Wenzl 
et al. [17]. 

Melt-grown elements like silicon and line compounds 
like AIz03 show striations due to impurities or dopants, in 
the case of silicon oxygen striations from partial dissolu­
tion of the Si02 crucible. Very pronounced striations are 
often found in doped crystals (semiconductors, lasers) and 
especially in crystals of solid solutions. 

Various definitions for striations had been suggested. In 
the following, functional terms are proposed which relate 
to the origin of the specific striations (instead of type-I, 
type-II, etc.). Striations are defined as growth-induced 
inhomogeneities in the crystal which are aligned along the 
facetted or non-facetted growth surface, or which in the 
case of facetted growth are caused by step-bunching and 
thus are related to the traces of macrosteps. These, often 
periodic, inhomogeneities are caused in the first case by 
growth rates which fluctuate with time due to temperature 
fluctuations and are schematically shown in Fig. I(a). 
Therefore they could be called thermal striations. In 
Czochralski crystal pulling these striations are frequently 
linked to the crystal rotation rate, since the crystal feels 
any lack of symmetry in the crucible-heater-insulation 
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1 V±~V Cross section 

~~~~~~~~~~~~ - Thermal striations (a) ~ 

~"; , 

I /> Cross section 

(b) Macrostep-Induced striations or kinetic striations 

Fig. I. (a) Striations or growth bands caused by temperature fluctuations leading to growth-rate variations are defined as "thermal striations", (b) 
Striations caused by macrosteps and corresponding localized (lateral) growth-rate differences are named "macrostep-induce striations" or "kinetic 
striations" . 

configuration [18]: these specific thermal stnatlOns are 
called rotational striations or in short rotationals. It was 
shown by Witt et at. [19] by using time markers and etching 
of crystal cross sections, that re-melting may occur 
followed by fast growth, so that they defined microscopic 
(instantaneous) and macroscopic (average) growth rates 
and thus could explain complex striation patterns. The 
fluctuating temperatures at the growth interface, leading to 
growth-rate fluctuations in Czochralski growth, are related 
to convective instabilities [20], due to interactions of several 
different kinds of flows which will be discussed further 
below. 

The second class of striations is caused by lateral growth 
rate differences VI and V2 as shown in Fig. l(b) and are 
named macrostep-induced striations or kinetic striations 
[21]. Facetted growth may be observed in growth from 
melts in low temperature gradients, and it is practically 
always observed in growth from aqueous or high-tempera­
ture solutions [22]. 

At high densities of growth steps, i.e. at high super­
saturation, the bunching of steps occurs and leads to 
macrosteps with large multiples of the height of the 
monostep. Frank [23] and Cabrera and Vermilyea [24] in 
1958 applied the kinematic wave theory, which was 
developed before for the general traffic-flow problem by 
Lighthill and Whitham [25], for the explanation of step 
bunching. As shown in Fig. l(b) growth surfaces with 
macrosteps (also called terrace-riser structure) exhibit 
different local growth mechanisms and growth rates. The 
terrace grows by lateral propagation of mono- or double­
steps with the facet growth rate VI> whereas the macrostep 
with a rough or mUltistepped surface has the velocity V2. 

These growth-rate differences cause corresponding differ­
ences in dopant or impurity incorporation and thus lead to 
striations which mark the traces of the macrosteps. These 
macrostep-induced striations are shown in Fig. 2 with LPE­
grown multilayers, where the correspondence of the kinetic 
striations (visible in the angle-lapped and etched p-GaAs 
layers) with the marked macrosteps is clearly recognized 

o 

STEPPED LAYERS 

Macrosteps SUBSTRATE Striations induced 
by macrosteps 

"Kinetic striations" 

Ill/II 

Partial 
faceting 

2 

11m 

Fig. 2. Angle-lapped (1.9°) and etched composite Nomarski (differential 
interference contrast) micrograph of an II-layer p/n-GaAs structure 
grown by liquid phase epitaxy. A first thick layer grown on the {I I I} 
substrate of 0.58° misorientation shows on the right side the transition to 
the facet which has a lower growth rate. On the left side the macro steps 
and macrostep-induced striations are clearly visible (Scheel (26)). 

[26]. In that work the transItion of the misoriented 
macrostep-surface to the facet with continuous step 
propagation by the Frank-Van der Merwe growth mode 
is described, a transition which leads to layers (and 
crystals) with excellent homogeneity, i.e. without striations. 
Chernov and Scheel [27] analyzed the conditions for 
achieving such atomically flat surfaces. The flatness was 
experimentally shown in 1982 by STM by Scheel et at. [28]. 

Macrosteps can be regarded as a first step towards 
growth instability and are formed not only at high 
supersaturation, but also in the presence of certain 
impurities and on misoriented surfaces [29]. When the 
thermodynamic driving force is further increased, the 
impurity built up in front of the growing crystal may 
reach a critical level and is suddenly incorporated. Crystal 
growth continues until once again the impurity is 
incorporated, and so on. This oscillation of growth rate 
and impurity concentration leading to striations was 
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theoretically analyzed and experimentally proven by Land­
au [30] and could be named instability-induced striations. 

3. Segregation phenomena and thermal striations 

The concentration of the constituents of a crystallized 
solid solution generally differs from that in the liquid from 
which the mixed crystal is grown, a phenomenon known as 
segregation. In equilibrium or at very low growth rates, the 
ratio of the concentration of component A in the solid 
to that in the liquid is defined as equilibrium segregation 
(or distribution) coefficient 

(1) 

ko may be derived from the equilibrium phase diagram by 
the ratio of solidus and liquidus concentrations of A at a 
given temperature. In a crystallizing system with a limited 
melt volume, segregation at the growing interface leads 
to a continuous compositional change of the fluid: C(Ak 
decreases for kerf> 1, and C(Ak increases for kerf < 1, so 
that the concentration in the solid continuously changes. 
This causes an inherent concentration gradient in the crystal 
for which the concentration at any location of the growth 
front is given, according to Pfann [31] by 

C(A) = kerfCo(1 - gterr - I
, (2) 

where g is the fraction of crystallized material and Co the 
initial concentration. Here it is assumed that kerf does not 
vary with concentration or temperature changes. This 
inherent concentration gradient can be made zero by 
keeping the fluid concentration constant, which can be 
achieved by growth at constant temperature in combina­
tion with transporting feed material from a higher 
temperature in the gradient-transport technique [32]. 
Several groups have attempted to grow solid-solution 
crystals by material transport in temperature gradients 
[33-35]. However, the large temperature gradients for 
acceptable growth rates lead to temperature fluctuations so 
that thermal striations could not be prevented. 

In Fig. 3 the phase diagram KNbOrKTa03 of Reisman 
et al. [36] is presented where the gradient-transport 
technique, using the temperature difference T3 to T4, is 
shown which was used by many groups listed in Ref. [8]. 
For electro-optic and other optical applications the 
variation of x must be smaller than 0.00003 [8], see also 
Table 1, and this requires temJ'erature fluctuations smaller 
than 0.01 °e as is indicated in Fig. 3. Also shown is the 
slow-cooling method where a quasi-isothermal solution is 
slowly cooled from TI to T2. This allows the growth of 
striation-free crystals. The inherent temperature gradient 
can be kept within tolerated limits when a single crystal is 
grown from a large melt. For the KTN system Rytz and 
Scheel [8] have calculated the mass of melt M which is 
needed to grow a crystal of volume V with a tolerated 
inherent concentration difference XI- X2. These data and 
also the temperature cooling range can be read from the 
nomogram shown in Fig. 4. For example a KTN crystal of 

1400·C 

1200·C 

I 
1000·C I 

I 
IX1 1X2 

/Gradienttransport 
j' Liquid technique 

/ 

o - 0.20" 0.40 0.60 

KTa03 \ ~ X [mole] 

Inherent Strations 
concentration 

gradient 

1400·C 

1000·C 

Fig. 3. The composition-temperature phase diagram KTaOrKNb03 of 
Reisman et al. [36] with indicated growth techniques and resulting 
inhomogeneities, after Rytz and Scheel [7]. 

lcm'jv 
~~~~--+-~~~4---4---~~~2=3 

T,-T. 

DOC 10 20 30 40 

Fig. 4. Nomogram to derive the experimental parameters for the growth 
of KTN solid-solution crystals of volume V with a specified maximum 
inhomogeneity XI-X2. M is the required mass of melt, T I -T2 is the 
cooling interval [7]. 

1 cm3 with .1x<0.02 requires a melt of 1000g which is 
cooled by 12°e. The results of growth experiments will be 
discussed further below. 

In normal growth we have neither the case of very low 
growth rates near equilibrium with kerf = ko, nor the case 
with very fast growth rate where kerf ~ 1. Fig. 5 shows the 
situation at the crystal-liquid interface for the cases of 
equilibrium (which could also be achieved by "complete 
mixing"), for the case of steady-state normal crystal 
growth, and for very fast diffusion-less solidification. Also 
shown are the concentrations in the solid and in the liquid 
with the diffusion boundary layers. In steady-state crystal 
growth the effective distribution coefficient kerf lies between 
the equilibrium distribution coefficient ko and I and is 
dependent on the diffusion boundary layer (j and the 
growth rate v as shown in Fig. 5. For the case of 
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CONCBNTRA'11ON 
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Fig. 5. The concentration relations at the crystal-liquid interface and the 
effective distribution coefficients for three growth situations: kerr 
approaches ko near equilibrium, that is at very low growth rate or 
complete mixing; in typical growth situations kerr is between ko and I; and 
at very fast growth rate kerr approaches unity. The diffusion boundary 
layer thickness b depends on the growth rate v and the flow rate u (of melt 
or solution) according to Eq. (6). 

Czochralski growth, the flow analysis of Cochran [37] 
invoking an infinite rotating disc was applied by Burton 
et al. [9] in order to derive kerr. It was considered that the 
solute concentration profile is virtually uniform in the 
radial direction, i.e. the diffusion boundary layer c5 can be 
regarded as having a constant thickness across the idealized 
flat growth surface. For moderate growth rates, b depends 
essentially on the crystal rotation rate w (except for the rim 
which is neglected), the kinematic viscosity v, and on a bulk 
diffusion coefficient D (which includes solute diffusion and 
solvent counter-diffusion): 

c5 = 1.6DI/ 3vl/ 6 w l / 2• (3) 

BPS derived for the steady-state case the equilibrium 
distribution coefficient 

kerr = ko/[ko + (\ - ko)-(Vd/D)] (4) 

with v the growth rate. This approximation can be utilized 
since the growth-rate dependence of ko is small due to 
minor variations of the growth rates for growing striation-

free crystals. Burton et al. [38] experimentally measured the 
distribution coefficients of several elements between solidi 
liquid germanium and correlated them with the tetrahedral 
covalent radii: the larger the element, the smaller the 
distribution coefficient. They also measured striations by 
radioactive tracers and photographic film and pointed out 
the importance of forced convection for growth of homo­
geneous crystals. 

For growth of solid solutions from dilute solutions, Van 
Erk [10] has considered the complex solute-solvent 
interactions and has derived the effective distribution 
coefficient for diffusion-limited growth as 

In kerr = In ko - (keff - I )(vb / D). (5) 

A further discussion of these segregation aspects and a 
comparison between BPS and van Erk can be found in 
Scheel and Swendsen [12]. Growth from solutions is 
normally limited by volume diffusion, and the relatively 
fast interface kinetics can be neglected. Based on the 
diffusion-boundary layer concept, Nernst in 1904 [39] 
derived the growth rate as 

(6) 

where ne and noo are the equilibrium and the effective bulk 
concentrations of the solute in the solution, and Pc is the 
solute density. The time constant for the effects of 
temperature fluctuations (and thus on the growth rate v) 
is on the order of seconds, while that for hydrodynamic 
fluctuations on b and v is on the order of minutes. In 
steady-state growth, within a given range of temperature 
and time, the D and ko in Eqs. (4) and (5) can be taken as 
constants. Therefore, changes in the effective distribution 
coefficient kerr are essentially determined by the product 
(Vb) of the exponent. As a first approximation, this product 
is constant due to the inverse relation between v and b in 
the Nernst equation (6). This means that hydrodynamic 
variations, which lead to changes of b, are compensated by 
growth-rate changes. On the other hand are growth-rate 
changes caused by temperature fluctuations not compen­
sated and thus lead to changes of kerr and to thermal 
striations. 

It follows from this discussion that for growth of 
striation-free crystals the temperature fluctuations should 
be suppressed to less than about 0.0\ °C (and thus 
temperature gradients to less than I °C/cm). A compromis­
ing requirement is the need to impose a temperature 
gradient to remove the latent heat at practical growth rates, 
and to control nucleation. 

Homogenizing the melts and solutions facilitates the 
achievement of above temperature conditions, and it 
reduces the diffusion problems leading to growth instabil­
ity and inclusions as discussed in Ch. 6 of Elwell and Scheel 
[22]. Stirring may be achieved by a continuous flow along 
the growth interface, by Ekman or Cochran flow towards 
the rotating growth surface, by periodic flow changes as in 
reciprocating stirring in growth from aqueous solutions or 
by accelerated crucible rotation technique ACRT [40] in 
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Table 2 
The role of hydrodynamics 

Starting 
point 

General 
approach 

Alternative 
approach 

Striations connected with convective instabilities [15,20] 

Reduction of Convection by 

• Baffle (Brice) 
• Microgravity/Skylab/Space experiments 
• Magnetic fields ([15], SONY, Fukuda) 

Disadvantages 
• Sufficient suppression of convection not achieved 
• Complexity; large effort 
• Diffusion/segregation problems 
• Unstable growth 

Forced convection 

• Simple technical realization 
o Stirrer (aqueous solutions) 
o Rotating substrate/crystal plate [32] 
o Accelerated crucible rotation technique ACRT 

[40,45] 
o Sloshing [43] 
o Magnetic stirring 

• Flat interface in Vertical Bridgrnan/VGF/ACRT 
o CdTe & solid solutions [41] 
o GaInSb solid solutions [42] 

• Reduced diffusion/segregation problems 
o High (maximum stable) growth rates (Scheel & 

Elwell, Goernert, Horowitz et al.) 
o High axial crystal yield 

Disadvantages: 

• Requirement of optimized forced convection 
o Theoretical/numerical simulation approach 
o Selective growth experiments 
o Intuition 

Optimum approach of combined reduced and forced convection: CRCZ 
[64] 

Role of dimension-less numbers and of numerical simulation 

growth from high-temperature solutions and in growth by 
vertical-BridgmanJVGF technique [41,42], or by sloshing 
proposed by Gunn [43]. 

For many years the favored approach to minimize 
striations was to reduce convection by growth in a 
microgravity environment or, in the case of semiconduc­
tors, to apply convection-damping magnetic fields, see 
Table 2. However, the above discussion has shown that 
forced convection has many advantages to increase the 
axial yield of crystals and, not at least, to achieve economic 
growth rates approaching the maximum stable growth 
rates for inclusion-free crystals. 

From above discussion we can also derive the experi­
mental conditions to induce regular striations and super-

lattice structures by applying a large temperature gradient 
in combination with periodic hydrodynamic changes (by 
ACRT) and a constant mean supersaturation. 

In the following, the theoretical considerations discussed 
above will be applied to an example of growing striation­
free KTN solid solution crystals. This goal has long eluded 
experimentalists [8]. 

4. Growth of striation-free KTN crystals 

The solid-solution system KTal_xNbx03 (KTN) is of 
special interest due to its very large electro-optic coefficient 
which can be optimized for specific application tempera­
tures by the choice of x [5]. However, for optical 
applications the inhomogeneity in refractive index should 
be less than 10-6

, requiring that the crystals and layers be 
striation-free to this level. 

As discussed above, this homogeneity cannot be 
achieved by the gradient-transport technique, but only by 
slow-cooling of nearly isothermal solutions. The latter 
approach was used by Rytz and Scheel [8] and Scheel and 
Sommerauer [44] who combined ultra-precise temperature 
control with optimized thermal profile in the furnace and 
with ACRT [45] to achieve striation-free KTN crystals for 
the first time. A typical crucible arrangement with bottom 
cooling to provide a nucleation site is shown in Fig. 6 along 
with the applied ACRT cycle. In ACRT the crucible with 
the growth solution is periodically accelerated and decel­
erated so that by inertia the liquid is moving relative to the 
crucible wall and forms a spiral when seen from top. This 
spiral shear flow was analyzed and simulated by Schulz­
DuBois [46]. He also analyzed the Ekman layer flow in 
which, under optimized conditions (flat crucible bottom, 
time constant), the liquid is always pumped through a thin 
Ekman layer at the bottom of the crucible. This Ekman­
layer flow may be even more effective for mixing than 
spiral shear flow, and can be seen in a glass of tea with 
tealeaves which collect in the center bottom when the 
rotation is stopped. Elwell and Scheel [32] described the 
derivation of optimized ACRT stirring based on kinematic 
viscosity of the liquid and on the crucible dimension. 

Temperature control with a precision of 0.03°C at 
around 1300 °C could be achieved by using a thermopile of 
3 to 9 Pt-6%Rh versus Pt-30% Rh thermocouples in series 
([47], see also[32] Ch.7 ). 

Un seeded KTN crystals with x = 0.01 [8] and x = 0.25 
[44] and up to 33 x 33 x 15mm3 in size were grown. ACRT 
stirring and localized cooling controlled nucleation of one 
to two crystals only. In the best crystals no striations were 
visible in a Zeiss polarizing microscope with specially 
selected strain-free lenses, although very faint striations 
could be revealed by using extremely sensitive methods [5]. 

5. Homogeneus crystals with kerr ---t 1 

The segregation and thus the striation problem could 
be solved when the effective distribution coefficient 
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Fig. 6. The typical ACRT cycle is shown at top, and the ACRT-crucible 
arrangement in the furnace is shown as side view/cross section. The 
300cm3 platinum crucible with welded lid and slightly cooled spot for 
nucleation control was used in the experiments for growth of KTN 
crystals [8]. 

approaches unity. As discussed above this is possible for 
the case of very high growth rates which cannot be applied 
for bulk crystals, but for low-dimensional crystals like 
plates, surface layers, and fibers. Edge-defined film-fed 
growth EFG allows the approach of kerr'" I as was shown 
theoretically [48] and experimentally [49] and [50] for 
platelet growth of doped LiNb03 and LiTa03. Miyazawa 
[51] grew relatively homogeneous Te-doped GaSb platelets 
by "shaped melt lowering", by pulling downwards. A 
capillary-controlled Czochralski/Stepanov method for 
growth of shaped crystals of SrxBal_xNb206 of improved 
homogeneity was applied by Ivleva et al. [52,53]. 

A quite different approach to achieve kerr = I was 
demonstrated by Mateika [II] who prepared complex 

3 

1~----------~------------------~ 

50 
Mole~PbF2 

100 
PbF2 

Fig. 7. The dependence of the effective distribution coefficient on the 
solvent composition in growth of Y- and La- doped gadolinium 
aluminate, after Scheel and Swendsen [12]. 

garnet compositions, by using ionic radii and optimized 
replacements on the tetrahedral, octahedral and dodecahe­
dral sites in the complex garnet structure, which resulted in 
kerr = I. Two examples of preparing substrate crystals for 
liquid phase epitaxy LPE of magneto-optic layers, with 
specific lattice constants, are 

I. Gd3ScxGa5_x012 with x = 1.6 approaches kerr(Sc)'" I 
with a = 12.543 A, and 

2. Gd3_xCaxGa5_x_2yMgyZrx+y012 with 0.31 <x<0.45; 
0<y<0.37; 0.45«x+y)<0.68 approaches kerr (Ca, 
Mg, Zr)",1 with a = 12.453-12.507 A. 

An effective distribution coefficient of unity could also 
be achieved in crystal growth from high-temperature 
solutions by optimized solvent mixtures as shown by 
Scheel and Swendsen [12], since the distribution coefficient 
depends on solvent-solute interactions. Systematic experi­
ments have shown that different solvents and solvent 
mixtures may cause kerr< I and kerr> I. By proper mixing 
of the solvent composition it is then possible to obtain 
k = I and thus eliminate the segregation problem. Two 
examples for perovskite solid solutions (Gd1_ x Y . ..AI03 and 
Gd1- xLaxAI03) are shown in Fig. 7. A systematic 
investigation would help to understand these approaches 
to achieve kerr = I and to establish rules for general 
applicability. 

6. Alternative approaches to reduce thermal striations 

In Table 2 a number of approaches to overcome the 
striation problem have been listed. In the following specific 
attempts, which got wider interest or found application in 
crystal production, will be briefly discussed. Ostrogorsky 
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and Mueller [54] proposed a submerged-heater method for 
vertical Bridgman growth, where the combined effect of 
thin melt layer and stabilizing temperature gradient should 
minimize striations, but the complexity has hampered 
technological application so far. This is in contrast to the 
application of ACRT in VGF and vertical Bridgman 
production of CdTe and GalnSb solid solution crystals by 
Capper et al. [41] and Dutta [42]. A modified Czochralski 
process has been described by Goriletsky et al. and by 
Eidelman et al. [55] for pulling huge halide scintillation 
crystals (up to 700 mm diameter and 550 kg weight) from 
small melt volumes. In this case there is a combined effect 
of small melt volume and forced convection due to 
counter-rotation of crystal and crucible. In practical 
fabrication of semiconductor crystals it was recognized 
that microgravity would not be applicable for various 
reasons, so that magnetic fields of various configuration 
were introduced to increase viscosity and damp convection, 
first by SONY 1980 for silicon followed by Terashima and 
Fukuda [56] for GaAs. The sloshing of Gunn [43] was 
mentioned earlier and was re-introduced as special vibra­
tion technique [57]. Kirgintsev and Avvakumov [58] 
compared several stirring techniques including vibrators 
and found the latter not very effective. Recently several 
authors [59-61] revived the interest in vibration stirring 
although it has not found application in commercial crystal 
production. 

For growth from melts by Czochralski crystal pulling 
there are six or more different kinds of flows below the rim 
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Fig. 8. Below the edge of a Czochralski-growing crystal there are more 
than six types of flow which differ in direction and/or velocity, for the case 
of crystal rotation + WI and crucible counter-rotation -CO2 above the 
critical Rossby number, after Scheel and Sielawa [63). 
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Fig. 9. Schematic presentation of the CRCZ where the complex flow 
region of Fig. 8 is transferred deeper into the melt by the ring and where 
the liquid fraction within the ring can be separated from bulk melt flow at 
optimum parameters [64). A quasi convection-free liquid zone can be 
achieved at optimum setting of + WI and -(J)2. 

of the crystal as shown in Fig. 8. A special problem arises 
with Taylor-Proudman cells [62] and with Taylor vortices 
[63]. Double crucibles will help somewhat to simplify the 
flow pattern and to increase axial yield and therefore are 
used in certain production lines of GaAs and of stoichio­
metric LiNb03. but have practical disadvantages in the 
growth process. 

A technologically simpler approach consists of a solid 
ring co-axial with the crystal and rotating with same 
direction and velocity with the crystal. This ring, intro­
duced into the melt, separates the melt fraction inside 
the ring from the well-mixed bulk melt (see Fig. 9). 
In simulation experiments it was shown that at optimized 
setting of rotation rate of crystal and ring, and counter­
rotation of the crucible, the melt fraction can be quasi 
stationary with only minor Ekman-layer flow. This 
co-rotating ring Czochralski (CRCZ) approach [64] has 
the positive double-crucible effects (for increased axial 
crystal yield and reduced striations) without the dis­
advantages of double crucibles. Numerical simulations 
have started, but the growth technology has yet to be 
developed. 
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7. Discussion and Summary 

Several experimental and theoretical solutions were 
presented to overcome the intrinsic pervasive problem of 
striations: 

I. ko, D, v, b = constant: very difficult ; chance with 
submerged heater or with CRCZ. 

2. ko, D, v = constant; b may vary: Rytz and Scheel [8], 
Scheel and Sommerauer [44], Scheel and Swendsen [12], 
Capper et al. [41], Dutta [42]. 

3. kerr = I for growth from melts: Mateika [11], for growth 
from solutions: Scheel and Swendsen [12]. 

Further conditions are 

(a) Continuous flat or smooth (isothermal) growth surface: 
Scheel [26-28], Capper et al. [41], Dutta [42]. 

(b) Homogeneous melt or solution with llnln< 10-5 and 
llT IT < 10-5 by forced convection leading to constant 
growth rate with II v Iv < 10-5

• 

These indicated tolerances are typical values and depend 
on the individual system and on the tolerated inhomo­
geneity of the crystal. Therefore it is advisable to first 
analyze theoretically a new growth system and the phase 
relations so that the technological parameters can be 
established. With respect to optimized hydrodynamics, 
simulation experiments with a liquid of similar kinematic 
viscosity are very useful in the early phase and may be 
complemented by numerical simulation for process opti­
mization. In certain cases, dimension-less numbers may be 
helpful to get a feeling for the convection regime. 

In conclusion one can say that the striation problem is 
solvable (on earth) but requires a certain theoretical and 
technological effort. Hydrodynamic fluctuations are not 
harmful as long as the fluid is sufficiently isothermal, as 
long as the transport of fluid of different temperature to the 
growth interface is suppressed. Forced convection is 
essential for economic growth of solid -solution crystals 
as it increases yield and assists to establish the conditions 
for growth of inclusion-free and striation-free crystals. 
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