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Solutions of the Striation Problem 
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ABSTRACT 

Striations are growth-induced inhomogeneities that hamper the applications' of 
solid-solution crystals and of doped crystals in numerous technologies. Thus 
the optimized performance of solid solutions often can not be exploited. It is 
commonly assumed that striations are caused by convective instabilities so that 
reduced convection by microgravity or by damping magnetic fields was and is 
widely attempted to reduce inhomogeneities. 

In this chapter it will be shown that temperature fluctuations at the growth 
interface cause striations, and that hydrodynamic fluctuations in a quasi­
isothermal growth system do not cause striations. The theoretically derived con­
ditions were experimentally established and allowed the growth of striation-free 
crystals of KTal-xNbx03 'KTN' solid solutions for the first time. 

Hydrodynamic variations from the accelerated crucible rotation technique 
(ACRT) did not cause striations as long as the temperature was controlled within 
0.03 °C at l200 °C growth temperature. Alternative approaches to solve the seg­
regation and striation problems are discussed as well. 

4.1 INTRODUCTION 

Solid solutions or mixed crystals are special crystals or alloys in which one or 
more lattice sites of the structure are occupied by two or more types of atoms, 
ions or molecules. By varying the concentration of the constituents, the physical 
or chemical properties of solid solutions can be optimized for specific applica­
tions, so that solid solutions play an increasing role in research and technology. 
One example are III-V semiconductors where the bandgap and thus emission 
and absorption wavelengths can be adjusted, along with the lattice constant to 
match the available substrates for epitaxial growth, for optical communication 
systems. Another example are III-V compounds for photovoltaic devices where 
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70 Crystal Growth Technology 

the composition can be adjusted to optimize the solar-cell efficiency and to maxi­
mize radiation resistance (Loo et al. 1980). In certain cases, properties and effects 
may be obtained in solid solutions that are not observed in the constituents: The 
phase transition temperature and the related anomaly of a high dielectric constant 
may be shifted to the application temperature for electro-optic, nOJ;llinear-optic 
and acousto-optic applications (Chen et al. 1966, Scheel and Gunter 1985). The 
hardening effect of solid solutions is often used to improve the mechanical prop­
erties (Nabarro 1975). 

The statistical distribution of species in a given lattice site normally is at 
random, but can deviate in the direction of ordering (with the extreme case 
of a supedattice) or in the direction of clustering (with the extreme case of 
immiscibility or phase separation) as it was shown by Laves 1944. This site 
distribution has an impact on the physical properties and can be controlled to some 
extent in metallic alloys, with their high diffusivities, by preparation or annealing 
conditions. However, in oxide systems with low diffusivities, the control of the 
distribution of species on lattice sites during crystal growth experiments has not 
been reported and will not be considered here. 

In this chapter the bulk fluctuations of concentration will be treated with 
respect to the application-dependent homogeneity requirements, the types of 
inhomogeneities and their origin, and how inhomogeneities can be reduced or 
completely suppressed. There is a strong tendency for fluctuations of the growth 
conditions causing concentration fluctuations along the growth direction known 
as striations or growth bands. The suppression of striations is an old problem in 
crystal-growth technology, so that several authors had described striations as an 
'intrinsic', 'inherent' or 'unavoidable' phenomenon in crystal growth, see Rytz 
and Scheel 1982, Scheel and Gunter 1985. 

Based on the segregation analyses for melt growth by Burton et al. (1953) and 
for growth from diluted solutions by Van Erk 1982, the role of hydrodynamics 
will be discussed, and the experimental conditions for growth of striation-free 
crystals derived. This theoretical result will be confirmed by the growth of 
quasi striation-free crystals of solid solutions. Finally, alternative approaches to 
reduce or eliminate striations are discussed, also novel approaches that require 
to be tested. 

4.2 ORIGIN AND DEFINITIONS OF STRIATIONS 

Nearly all crystals have inhomogeneities and growth bands called striations. Early 
observations of striations in semiconductor crystals have been reported by Goss 
et al. (1956) and by Bardsley et al. (1962) and for CaF2 by Wilcox and Fullmer 
(1965). Hude (1966) has shown for semiconductor crystals and Cockayne and 
Gates (1967) for Czochralski-grown oxide and fluoride crystals, that striations are 
caused by temperature fluctuations that may be correlated with thermal unsymme­
try or with convective oscillations when a critical Rayleigh number is surpassed. 
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Many compounds like GaAs and LiNb03 are not line compounds, but have 
an existence range, that is they have a certain degree of solid solubility with one 
or both of the constituents. This causes a difference of the congruent melting 
composition from the stoichiometric composition. Therefore the grown crystals 
show variations of composition, often in the form of striations, depending on 
the exact growth conditions (melt composition and growth temperature and their 
fluctuations). This topic is discussed by Miyazawa in this volume for oxides and 
by Wenzl et al. (1993) for GaAs and compound semiconductors. 

Also, melt-grown elements like silicon and line compounds like Ah03 show 
striations due to impurities, in the case of silicon-oxygen striations from partial 
dissolution of the Si02 crucible. Very pronounced striations are often found in 
doped crystals (semiconductors, lasers) and in crystals of solid solutions. 

The homogeneity requirements depend on the material and on the applica­
tion. Examples of the maximum composition (X) variations l:::.X/ X are given in 
Table 4.1. 

Corresponding to these tolerance limits, analytical methods are to be applied 
or developed in order to assist in the achievement of 'striation-free' crystals. In 
addition to the well-established methods to visualize striations, Donecker et al. 
(1996) developed a colorful optical diffraction method to visualize striations and 

. demonstrated it with oxide, doped InP and Si1-xGex crystals. 
It is recommended to use the term 'striation-free' in those cases where stri­

ations can not be detected or where they are not harmful for the specific appli­
cation. An absolute striation-free crystal may neither be achieved nor proven, 
although in facetted growth or in liquid-phase epitaxy in the Frank-Van Der 
Merwe growth mode quasi striation-free crystals and layers could be expected 
when step-bunching is prevented. 

Various definitions for striations had been suggested. In the following 'func­
tional terms' are proposed that relate to the origin of the specific striations (instead 
of type-I, type-II, etc.). Striations are defined as growth-induced inhomogeneities 
in the crystal that are aligned along the facetted or non-facetted growth surface, 
or in the case of facetted growth with step-bunching are related to the traces 
of macrosteps. 

Table 4.1 Homogeneity requirements of material classes 

Crystals, substrates, epilayers 

Semiconductors and solid solutions 
GaAs/GaP, (Ga,In)As, (Ga,In)Sb, 
(Cd, Hg)Te 

Dielectrics 
Piezo-electrics, pyroelectrics, electro-optic, 
Nonlinear-optic and laser crystals 

Magnetic and magneto-optic crystals and layers 
Metals and alloys 

/).XjX 

10- 4 to 10-5 

10- 5 to 10- 7 

10-4 to 10-5 

10-2 to 10-3 
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These, often periodic, inhomogeneities are caused in the first case by growth 
rates which fluctuate with time due to temperature fluctuations and are schemati­
cally shown in Figure 4.1(a). Therefore they could be named 'thermal striations'. 
In Czochralski crystal pulling these striations are frequently linked to crystal 
rotation rate, since the crystal feels any unsymmetry in the heater-insulation con­
figuration (Camp 1954): these specific thermal striations are called 'rotational 
striations' or in short 'rotationals'. It was shown by Witt et al. (1973) by using 
time markers and etching of crystal cross sections, that remelting may occur 
followed by fast growth, so that they defined microscopic (instantaneous) and 
macroscopic (average) growth rates and thus could explain complex striation pat­
terns. The fluctuating temperatures at the growth interface, leading to growth-rate 
fluctuations in Czochralski growth, are related to convective instabilities (Hurle 
1967), to interactions of several different kinds of flows, which will be discussed 
further below. 

The second class of striations is caused by lateral growth-rate differences as 
shown in Figure 4.1(b) and are named 'macrostep-induced striations' or 'kinetic 
striations'. Facetted growth may be observed in growth from melts in small tem­
perature gradients, and it is practically always observed in growth from solutions 
and from high-temperature solutions. At high densities of growth steps, i.e. at 
high supersaturation respectively growth rates, the bunching of steps occurs and 
leads to macro steps with a large integer of the height of the monostep. For a qual­
itative explanation of this phenomenon Frank (1958) and Cabrera and Vermilyea 
(1958) applied the kinematic wave theory that was developed by Lighthill and 

(a) temporal growth-rate variations 

v ± dV 
Cross 
Section 

~~~~~~~~~~~ ______ Striations or 

(b) lateral growth-rate differences 
due to macrosteps or partial faceting '-~ 

Macrostep-induced 
or kinetic striations 

growth bands 

Figure 4.1 Definition of striations (a) caused by temporai growth-rate and tempera­
ture fluctuations as 'thermal striations', (b) caused by macrosteps and lateral growth-rate 
differences as 'macrostep-induced striations' or as 'kinetic striations'. 
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Whitham (1955) for the general traffic-flow problem. As shown in Figure 4.1(b) 
growth surfaces with macrosteps respectively with a terrace-and-riser structure 
with different local growth mechanisms and growth rates: The terrace grows due 
to lateral propagation of single or double steps with the facet growth rate Vt, 

whereas the m'acrostep has the velocity V2. These growth-rate differences cause 
corresponding differences in impurity or dopant incorporation and thus lead to the 
striations which mark the traces of the macrosteps. These 'macrostep-induced' or 
'kinetic striations' are shown in Figure 4.2 with LPE-grown multilayers, where 
the correspondence of the kinetic striations (visible in the angle-lapped and etched 
p-GaAs layers) with the marked macrosteps is clearly recognized (Scheel 1980). 
In that work the transition of the misoriented macrostep-surface to the facet with 
a continuous step propagation by the Frank-Van Der Merwe growth mode is 
described, a transition that of course leads to layers with excellent homogeneity, 
i.e. without striations. Chemov and Scheel (1995) analyzed the conditions for 
achieving such atomically flat surfaces and extremely homogeneous layers (and 
crystals), see also the epitaxy review of Scheel in this volume. 

Macrosteps can be regarded as a first step towards growth instability and 
are formed not only at high supersaturation, but also in the presence of certain 
impurities, and on misoriented surfaces (Cpemov 1992). When the thermody­
namic driving force is further increased, then the impurity built up in front of 

STEPPED LAYERS 

Macrosteps 

o 

ex = 0.575 ± 0.012° 

SUBSTRATE Striations induced 
by macrosteps 

"Kinetic striations" 

mm 

Partial 
faceting 

2 

Figure 4.2 Macrostep-induced striations visible in the etched p-GaAs layers of an 
ll-layer p-/n-GaAs structure grown by liquid phase epitaxy (Scheel 1980). On the GaAs 
substrate of 0.58° misorientation first a thick layer is grown, which on the right side shows 
the transition to the {Ill} facet, whereas the macrostepped surfaces on the left side cause 
the striations. Angle-lapped (y = 1.9°) and etched, composite differential interference 
(Nomarski) micrograph. 
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the growing crystal may reach a critical level and is suddenly incorporated, then 
crystal growth continues until again the impurity is incorporated, and so on. 
This oscillation of growth rate and impurity incorporation leading to striations 
was analy,zed theoretically and experimentally by Landau (1958). This kind of 
inhomogeneity could be named 'instability-induced striations'. 

4.3 HOMOGENEOUS CRYSTALS WITH keff -+ 1 

The segregation problem is defined by the distribution coefficient k which gives 
the concentration ratio of a constituent in the grown crystal to that in the growth 
melt or solution as will be discussed later. Normally k is not unity so that either 
more constituent is incorporated (k > 1) or less constituent than in the growth 
fluid is built into the crystal (k < 1). In these cases k = 1 could be achieved 
in quasi-diffusionless growth, at very high solidification rates. These cannot be 
applied in bulk crystal growth, but might be acceptable in certain cases of low­
dimensional growth, for instance in one-dimensional whiskers or thin rods, or in 
two-dimensional structures like thin plates or in lateral growth of thin layers. 

Mateika (1984) has shown that in the complex garnet structures with tetrahe­
dral, octahedral and dodecahedral sites and by crystal-chemical considerations, 
cations could be introduced and combined, so that k = 1 was achieved. In order 
to obtain a garnet substrate crystal with a specific lattice constant, the ionic radii 
and valency of the cations had to be taken into account. For example, the garnet 
Gd3ScxGa5-x012 with a = 12.543 A could be grown from melt with x = 1.6, 
when k(Sc) = 1. 

A constant effective distribution coefficient of unity could also be achieved 
in crystal growth from high-temperature solutions. By the use of solutions an 
additional degree of freedom is obtained, since the distribution coefficient also 
depends on the properties of the solvent and on solvent-solute interactions. Sys­
tematic experiments with the growth of oxide solid solutions have shown that 
different solvents and solvent mixtures may cause keff > 1 and keff < 1 for a 
given solid solution. By proper mixing of the solvent it is then possible to obtain 
k = 1 and thus eliminate the segregation problem. Two examples are given with 
the perovskite solid solutions Gd l - x YxAI03 and Gd l - xLaxAI03 that are grown 
from solvent mixtures with the major components PbO and PbF2 and the minor 
components B20 3 and excess Ah03 (Scheel and Swendsen 2001). 

In Figure 4.3 the measured effective distribution coefficients of the La and 
Y dopants in GdAI03 are shown as a function of the PbO-PbF2 solvent com­
position. For the pure PbO flux, keff for La is nearly four, whereas for equal 
concentrations of oxide and fluoride keff is less than 0.5. At a composition of 
about 37 mol% PbF2 , keff = 1 is obtained. In the case of Y-doped GdAI03, a 
nearly pure PbO solvent is required to obtain keff = 1. 

An example of garnet solid solutions grown from PbO-PbF2 solvent mixtures 
is shown in Figure 4.4 using the data of Krishnan (1972). Here the distribution 
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Figure 4.3 The dependence of the effective distribution coefficient on solvent com­
position in growth of La-doped and Y -doped gadolinium aluminate, after Scheel and 
Swendsen 200l. 
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Figure 4.4 The dependence of the effective distribution coefficient on the PbO-PbF2 

solvent ratio in flux growth of Cr-doped yttrium iron gamet, after Scheel and Swendsen 
200l. 

coefficient for Cr in yttrium-iron garnet increases with increasing PbF2 concentra­
tion, so that by extrapolation a solvent mixture with about 32 mol% PbO should 
give keff = 1. Another example of Ga2-xFex03 solid solutions grown from PbO­
B20 3 and Bh03-B203 solvent mixtures shows that keff = 1 can be approached 
with the Bh03-rich flux (data of Schieber 1966). 



76 Crystal Growth Technology 

A systematic investigation would help to understand these approaches to 
achieve keff = 1 and to establish rules for the general applicability. 

4.4 SEGREGATION PHENOMENA AND THERMAL STRIATIONS 

The concentration of the constituents of a solid solution generally differs from 
that in the liquid from which the mixed crystal is grown, a phenomenon known 
as segregation. In equilibrium or at very low growth rates the ratio of the concen­
tration of component A in the solid to that in the liquid is defined as equilibrium 
segregation (or distribution) coefficient 

k(A)o = C(A)s/ C(Ak (4.1) 

ko may be derived from the eqUilibrium phase diagram by the ratio of solidus 
and liquidus concentrations of A at a given temperature. 

In a crystallizing system with a limited melt volume, segregation at the grow­
ing interface leads to a continuous change of the fluid: C(Ak decreases for 
keff > 1, and C(Ak increases for keff < 1, so that the concentration C(A)s in the 
solid continuously changes. This causes an inherent concentration gradient in the 
crystal of which the concentration at any location of the growth front is given by 

(4.2) 

where g is the fraction of crystallized material and Co the initial concentration as 
derived by Pfann (1952). Here it is assumed that keff does not vary with concen­
tration or temperature changes. Obviously the inherent concentration gradient can 
be made zero by keeping the fluid concentration constant. This can be done by 
growth at constant temperature in combination with transporting feed material 
from a higher temperature, a growth technique called gradient-transport tech­
nique (Elwell and Scheel 1975). However, this approach generally involves large 
temperature gradients (for acceptable growth rates) and thus leads to temperature 
fluctuations, so that striations cannot be prevented. 

In Figure 4.5 the phase diagram of the system KTa03 - KNb03 of Reisman 
et al. (1955) is presented where the gradient-transport technique, using the tem­
perature difference T3 to T4 , is shown. Numerous groups listed by Rytz and 
Scheel (1982) using this approach could not grow the required striation-free crys­
tals of KTN (KTal-xNbx03) solid solutions. For electro-optic and other optical 
applications the variation of x must be smaller than 0.00003, and this requires 
temperature fluctuations smaller than 0.01 DC as is indicated in Figure 4.5. Also 
shown is the slow-cooling technique, where a quasiisothermal solution is cooled 
from TJ to T2. This allows to grow striation-free crystals, and the inherent con­
centration gradient can be kept within tolerated limits by using a large melt. For 
the KTN system Rytz and Scheel (1982) have calculated the mass of melt M 



Solutions of the Striation Problem 

Gradient 

Liquid 

o _ 0.20 ~.40 0.60 

\ 
X_[mole] 

KTa03 
Inherent 
concentration 
gradient 

Striations 

Transport 
technique 

0.80 

77 

Figure 4.5 The phase diagram KTa03 - KNb03 of Reisman et ai. (1955) with indicated 
growth techniques and resulting inhomogeneities, after Rytz and Scheel 1982. 

that is required to grow a crystal of specified volume V with a tolerated inherent 
concentration difference Xl - X2. These data and also the temperature cooling 
range can be read from the nomogram shown in Figure 4.6. For example, a KTN 
crystal of 1 cm3 with Llx < 0.02, requires a melt of 1000 g that is cooled by 
12°C. The results of growth experiments will be discussed further below. 

In normal crystal growth we have neither the case of very fast growth and 
keff = 1 nor are we near equilibrium with very low growth rates and keff = 
ko, as crystals should be grown at the fastest possible rate that still gives high 
structural perfection. Figure 4.7 shows the situations at the crystal/liquid interface 
for the three cases of equilibrium (which theoretically could also be achieved 
by 'complete' mixing), for the steady-state normal crystal growth, and for fast 
diffusionless solidification. Also shown are the concentrations in the solid and in 
the liquid with the diffusion boundary layers. In the steady-state crystal growth 
the effective distribution coefficient keff lies between the equilibrium distribution 
coefficient ko and 1 and is dependent on the diffusion boundary layer 0 and the 
growth rate v as shown in Figure 4.7. 

For the case of pulling a rotating crystal from the melt by the Czochralski tech­
nique, the flow analysis of Cochran (1934) towards an infinite rotating disc was 
applied by Burton, Prim and Slichter (BPS, 1953a) in order to derive the effective 
distribution coefficient. Thereby it was considered that the solute concentration 
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Figure 4.6 Nomogram to read the experimental parameters for growth of KTN solid 
solution crystals of a specified maximum inhomogeneity Xl - X2 and volume V. 
M = mass of the melt, Tl - T2 is the cooling interval (Rytz and Scheel 1982). 

profile is virtually uniform in the radial direction, i.e. the diffusion boundary layer 
8 can be regarded as having constant thickness across the idealized fiat growth 
interface. Up to a not too large growth rate, 8 depends essentially on the crystal 
rotation rate w (except for the rim, which is neglected), the kinematic viscosity 
v, and a bulk diffusion coefficient D (which includes solute diffusion and solvent 
counter-diffusion) by 

(4.3) 

BPS derived for the steady-state case, in which equilibrium prevails at the 
interface virtually independently of growth rate, the equilibrium distributi.on 
coefficient 

keff = ko/[ko + (1 - ko) exp -(v81 D)] (4.4) 

with v the growth rate. In the following, this approximation can be utilized; since 
the growth-rate dependence of ko will be negligible due to the fact that in our 
attempt to grow striation-free crystals the effective variations of the growth rate 
are small. 

In the accompanying experimental paper Burton et al. (1953b) measured the 
distribution coefficients of several elements in solid/liquid germanium and were 
able to correlate them with atomic size, respectively, the tetrahedral covalent 
radii: the larger the element, the smaller the distribution coefficient. They also 
measured striations by means of incorporated radioactive tracers and photographic 
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Figure 4.7 The concentration relations at the growth interface and the effective distri­
bution coefficients for three growth situations: near equilibrium keff approaches ko, in very 
fast solidification keff approaches unity, and in typical crystal growth keff is between ko 
and 1. The diffusion boundary layer thickness /) depends on the growth rate v and on the 
flow rate of melt or solution. 

film and pointed out the importance of adequate stirring for the growth of homo­
geneous crystals. 

For growth of mixed crystals from dilute solutions, van Erk (1982) has con­
sidered the complex solute-solvent interactions and has derived the effective 
distribution coefficient for diffusion-limited growth as 

In keff = In ko - (keff - 1) ( v 8 / D). (4.5) 
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The plotted solutions of Equations (4.4) and (4.5) shown in Figures 4.8 and 
4.9, respectively, look similar, but the sensitivity to fluctuations of the growth 
parameters is different (Scheel and Swendsen 2001). 

Growth from solutions is normally limited by volume diffusion, and the rela­
tively fast interface kinetics can be neglected. Based on the diffusion-boundary 
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Figure 4.8 The effective distribution coefficient as a function of the exponent 
(v8/ D) = ~ from the Burton-Prim-Slichter Equation (4.4) for four values of ko (Scheel 
and Swendsen 2001). 

2 

1.8 -- ko=2.0 

1.6 --- ko=0.5 

1.4 
--- ko = 0.1 

- - - - -. ko = 0.01 
1.2 

~ 
..;cO) 

0.8 
--------------------" 0.6 

0.4 

0.2 

0 
0 2 4 6 8 10 

Figure 4.9 The effective distribution coefficient as a function of the exponent ~ from 
the Van Erk theory and Equation (4.5) for four values of ko (Scheel and Swendsen 2001). 
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layer concept, Nemst (1904) has derived the growth rate as 

(4.6) 

with ne and noo the equilibrium and effective bulk concentrations of the solute 
in the solution, and Pc is the solute density. The time constant for the effects of 
temperature fluctuations (and thus on growth rate v) is on the order of seconds, 
while that for hydrodynamic fluctuations on 8 and v is on the order of minutes. In 
steady-state growth, within a given range of time and temperature, the diffusion 
coefficient D and the equilibrium distribution coefficient ko in Equations (4.4) and 
(4.5) can be taken as constants. Therefore the changes in the effective distribution 
coefficient keff are essentially determined by the product (v8) of the exponent. 
As a first approximation this product is constant due to the inverse relation 
between v and 8 in the growth-rate Equation (4.6). This means that hydrodynamic 
changes, which lead to changes of 8, are compensated by growth-rate changes. 
On the other hand, growth-rate changes caused by temperature fluctuations are 
not compensated and thus lead to changes of keff and to thermal striations. 

It follows from this discussion that for growth of striation-free crystals the 
temperature fluctuations should be suppressed to less than about 0.01 °c, and 
therefore also the temperature gradients should be minimized to less than about 
1 °c per cm. On the other hand the crystal has to be cooled to remove the latent 
heat at practical growth rates, and to control nucleation. 

The application of forced convection is recommended for efficient growth. 
Homogenizing the melts and solutions facilitates the achievement of above tem­
perature conditions, and it reduces the diffusion problems leading to growth 
instability as discussed in Chapter 6 of Elwell and Scheel (1975). Stirring may 
be achieved by a continuous flow along the growth interface, by Ekman or 
Cochran flow towards the rotating growth surface, by periodic flow changes, as 
in reciprocating stirring in growth from aqueous solutions or by accelerated cru­
cible rotation technique (ACRT) in growth from high-temperature solutions or in 
growth by the Bridgman-Stockbarger technique, etc. 

For many years the favored approach to minimize striations was to reduce 
convection, to apply microgravity or in the case of semiconductors to apply 
convection-damping magnetic fields. But the above discussion has shown that, 
except for special cases requiring large temperature gradients, forced convection 
has many advantages, not least to achieve economic growth rates approaching 
the maximum stable growth rates for inclusion-free crystals. 

From the above discussion we can also derive the experimental conditions to 
induce regular striations and superlattice structures, for instance by applying a 
large temperature gradient in combination with periodic hydrodynamic changes 
(by ACRT) and applying a constant mean supersaturation, respectively, a constant 
mean growth rate. 

The suppression of striations represents an old problem in crystal-growth tech­
nology, and several authors have described striations as an 'inherent', 'intrinsic' 
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or 'unavoidable' phenomenon in crystal growth, for example Byer (1974), Rauber 
(1978), and Reiche et al. (1980). 

In the following, the theoretical considerations discussed above will be applied 
to an example of growing striation-free crystals of KTN solid solutions which 
could long not be achieved despite the numerous attempts listed by Rytz and 
Scheel (1982). 

4.5 GROWTH OF STRIATION-FREE KTN CRYSTALS 

The solid-solution system KTal-xNbx03 (KTN) is of interest due to its very 
large electro-optic coefficient which can be optimized for specific application 
temperatures by the choice of x (Scheel and Gunter 1985). The composition 
with x = 0.35 is used for room-temperature applications, because the ferroelec­
tric transition temperature is then 10 ° C and the very large dielectric constant 
and electro-optic coefficient are observed just above the transition. However, for 
optical applications the inhomogeneity in refractive index should be less than 
10-6 , requiring that the crystals and layers be striation-free to this level. 

As discussed above, this homogeneity can not be achieved by a gradient­
transport technique, but only by slow-cooling of nearly isothermal solutions. The 
latter was applied by Rytz and Scheel (1982) and Scheel and Sommerauer (1983) 
who, furthermore, combined an ultra-precise temperature control with optimized 
temperature distribution in the furnace and applied stirring by the accelerated 
crucible rotation technique (ACRT) (Scheel 1972) and thus could obtain striation­
free KTN crystals for the first time. A typical crucible arrangement with bottom 
cooling to provide a nucleation site is shown in Figure 4.10 along with the applied 
ACRT cycle. In ACRT the crucible is periodically accelerated and decelerated 
so that by inertia the liquid is moving relative to the crucible wall and forms a 
spiral when seen from top. This spiral shear flow (or spiral shearing distortion) 
was analyzed and simulated by Schulz-DuBois (1972). He also analyzed the 
Ekman layer flow in which, under optimized conditions, the liquid is always 
pumped through a thin Ekman layer at the bottom of the crucible when this is 
accelerated and decelerated. In Chapter 7 of the book of Elwell and Scheel (1975) 
the derivation of optimized ACRT stirring based on the kinematic viscosity of 
the liquid and on the crucible dimension is treated. 

Temperature control with a precision of 0.03°C at around 1300°C could 
be achieved by using a thermopile of Pt-6%Rh versus Pt-30%Rh thermocou­
ples (Scheel and West 1973). In Figure 4.11(a) the electromotive forces, i.e. the 
high-temperature sensitivities of conventional thermocouples and of the 6-fold 
thermopile are compared whereby the room-temperature sensitivity of the ther­
mopile (Figure 4.11(b)) is practically zero, so that cold-junction compensation is 
not required. The temperature distribution in the chamber furnace was optimized 
by arranging heating elements and ceramic insulation according to the reading 
of numerous thermocouples in the system, and the control thermopile was posi­
tioned at the optimum site between heating elements and crucible. KTN crystals 
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Figure 4.10 Side view of a 300-cm3 platinum crucible, with welded lid and slightly 
cooled spot at crucible bottom for nucleation control, used in the ACRT experiments for 
growth of KTN crystals (Rytz and Scheel 1982). A typical ACRT period is also shown. 

with x = 0.01 and x = 0.25 and up to 33 x 33 x 15 mm3 in size were grown, 
see Table 4.2 for details of the results. 

In the best crystals no striations were visible in a polarizing microscope, 
although very faint striations could be revealed by using extremely sensitive 
methods (Scheel and Gunter 1985). 
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Figure 4.11 The electromotive forces of various common thermocouples (a) for high 
temperatures, (b) for the temperature range 0 to 50°C. Note that the thermopile of 
6 x PtRh6% versus PtRh30% has a very high sensitivity at high temperatures and prac­
tically no sensitivity around room temperature (Scheel and West 1973, from Elwell and 
Scheel 1975). -

4.6 ALTERNATIVE APPROACHES TO REDUCE STRIATIONS 

Based on the early studies of striations discussed in Section 4.2, the striations 
were generally connected with convective oscillations: a clear distinction between 
the effects of hydrodynamics and of temperature as discussed by Scheel and 
Swendsen (2001) and in Section 4.4 was not consequently attempted before. 
This explains the numerous approaches to reduce convection in order to solve 
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Table 4.2 Results of 'striation-free' KTal-xNbx03 crystals 

with x rv 0.01 and Tc rv 0 K (Rytz and Scheel 1982) 
(cooling rate 0.15 DC per hour; ACRT) 
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Crystal size up to 3.5 x 3.0 x 1.8 cm3 with 'perfect' regions up to 0.8 x 0.4 x 0.4 cm3 

x = 0.0070 ± 0.00002 and ~x < 0.0003/cm (detection limit of ARL electron 
microprobe and of acoustic resonance measurements) 

Very faint striations by polarizing microscope, not detectable by electron microprobe 

with x rv 0.25 and Tc rv 300 K (Scheel and Sommerauer 1983) 
(cooling rate 0.13 DC per hour; ACRT; growth rate rv500Als) 
Crystal size up to 3.6 x 3.3 x 1.5 cm3 with 'perfect' regions up to 0.5 x 0.5 x 0.25 cm3 

~T = 0.1 DC rv ~x = 0.0003/cm at x::; 0.25 
No striations detectable in polarizing microscope and by interferometry (no strain 

birefringence) 

Best literature values for x rv 0.25-0.3: always with striations 
~x = 0.006/cm Fay 1967 
~x = 0.002/cm Levy and Gashler 1968 

the striation problem, whereas it was discussed above that forced convection 
and even oscillating convection of quasi-isothermal solutions can solve the stri­
ation problem. 

In the following, first the attempts to reduce convection will be briefly dis­
cussed on the base of the Rayleigh number Ra. At a critical value of Ra one 
expects the onset of convection in a fluid between a warm bottom plate and a 
cool top plate (although in reality convection will always occur whenever there 
is a temperature difference in a real growth system): 

gaL3 f:)..T 
Ra=---­

kv 
(4.7) 

where a is the thermal expansion coefficient, L the fluid height, f:).. T the tem­
perature difference, k thermal conductivity, v the kinematic viscosity, and g the 
gravitation constant. The first approaches have been to reduce L by means of shal­
low melts or by baffles below the growth interface in Czochralski crystal pulling. 
Also double crucibles may have a certain effect on striations (Kozhemyakin 
2000), but their greatest advantage is the increased axial crystal yield with the 
same composition, as it was shown by Benson et al. 1981 for silicon and later 
applied to GaAs and LiNb03 growth. 

Edge-defined film-fed growth EFG allows keff "-' 1 to be approached as was 
shown theoretically by Kalejs (1978) and experimentally by Fukuda and Hirano 
(1976) and Matsumura and Fukuda (1976) for platelet growth of doped LiNb03 
and LiTa03. Shaped growth by pulling downwards has been studied by Miyazawa 
(1982) who grew relatively homogeneous Te-doped GaSb platelets by 'shaped 
melt lowering'. A capillary-controlled Czochralski process for shaped crystals 
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of SrxBal -xNb206, which has similarity with Stepanov and EFG, was applied 
by Ivleva et al. (1987, 1995) and has led to nearly striation-free crystals due to 
the thin melt layer between shaping multicapillary die and the crystal. Nakajima 
(1991) and Kusonoki et al. (1991) tried to grow InGaAs solid-solution crystals by 
ramp-cooling and by GaAs supply at constant temperature similar to W. Bonner, 
but it seems that large homogeneous crystals for technological use as substrates 
has not yet been achieved. Ostrogorsky and Muller (1994) proposed a submerged­
heater method for vertical Bridgman growth, where the combined effect of thin 
melt layer and stabilizing temperature gradient should minimize striations, but 
the complexity has hampered technological application. 

Large-scale application has found the modified Czochralski process for pulling 
huge halide scintillator crystals (up to 700 mm diameter and 550 kg weight) from 
small melt volumes with liquid feeding by Gektin and Zaslavsky, see in this 
volume. In this case, there is a combined effect of small liquid volume and 
forced convection due to counterrotation of crystal and crucible. 

But from the time of Skylab and with the available funding for space exper­
iments, the interest shifted in the direction of microgravity, of reduction of g 
in Equation (4.5). In practical fabrication of semiconductor crystals it was rec­
ognized that microgravity would not be applicable for various reasons, so that 
here the parameter v of Equation (4.7) was considered: by application of mag­
netic fields the viscosity was increased, and convection was damped. Magnetic 
fields were first introduced in 1980 by SONY to silicon production, followed 
by Fukuda and Terashima, who in 1983 applied magnetic field to GaAs growth, 
which in industry is still applied in LEC production of specific GaAs products. 

Alternative approaches to apply forced convection have been discussed in the 
Elwell-Scheel book, for instance 'sloshing' of the crucible by moving the cen­
ter of the container in a horizontal circular path described first by Gunn (1972) 
as 'sloshing' and later as a special vibration technique by Liu et al. (1987). 
Kirgintsev and Avvakumov (1965) compared various stirring techniques includ­
ing vibrators and found the latter not very effective. Hayakawa and Kumagawa 
(1985) and more recently Kozhemyakin (1995) and Zharikov et al. revived the 
interest in vibration stirring, although it has not yet found application in real 
crystal production. 

An optimized technology for growth from solutions using a large rotating seed 
crystal (or a substrate for liquid phase epitaxy) is shown in Figure 4.12. 'In bulk 
growth the grown crystal can be cut off and, after etching to remove the, surface 
damage from slicing, the seed crystal can be used again for the next growth 
cycle, a little like the large-diameter seed crystals recently developed in silicon 
Czochralski technology. The optimum crystallographic orientation of the seed is 
important firstly in view of the growth mechanism to remain at a flat growth 
surface and to prevent macrostep formation, and secondly with respect to the 
application of the crystal. In this configuration, a sufficiently high seed rotation 
rate provides Ekman layer flow and thus a quasiconstant diffusion boundary layer 
along the crystal surface. 
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Figure 4.12 An ideal growth system for growth of striation-free large-diameter crystals 
and of thick and homogeneous LPE layers. 
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Figure 4.13 More than six types of flow, differing in direction and/or velocity, below 
the edge of a Czochralski-grown crystal for the case of crystal rotation +w\ and crucible 
counterrotation -W2 above the critical Rossby number (Scheel and Sielawa 1985). 
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For growth from melts by Czochralski crystal pulling there are six or more 
different kinds of flows below the rim of the crystal as shown in Figure 4.13: 
flows with different directions and/or different velocities. Double crucibles dis­
cussed above will help somewhat to simplify the flow pattern but have practical 
disadvantages in the growth process. A technologically simpler approach con­
sists of a solid ring coaxial with the crystal rotation axis and rotating with same 
direction and velocity as the crystal. This ring can be introduced into the melt 
after complete melting and it can be easily removed at the end of the growth 
process. In simulation experiments it was shown that at optimized setting of the 
rotation rate of crystal and ring, and counterrotation of the crucible, the melt 
fraction inside the ring is nearly stationary and separated from the well-mixed 
bulk melt, see Figure 4.14. This co-rotating ring Czochralski CRCZ approach 
of Scheel (1995) has the positive double-crucible effects without the disadvan­
tages of a double crucible: an increased yield of axially homogeneous crystal 

Co-rotating Ring Czochralski 

CRCZ, schematic 

Upper Taylor­
Proudman Cell 

~~;"'"'8" ~~~~-<;;t::::::= Stewartson Layers 

---...o..-"?<~P::+"""t-- Lower Taylor­

'r<:::;I""~ 

Proudman Cell 

At a specific ratio of WI 

and w2 the liquid within 
the ring is quasi 
stationary (w ~ 0), at 
high WI this liquid 
fraction rotates as a 
rigid body. 

Ekman (or Cochran) 
Flow 
Marangoni Flow 
Taylor Vortices 
Buoyancy-driven 
Convection 

Stewartson Layer 
Ekman Layer 

Figure 4.14 Schematic presentation of the Co-rotating ring Czochralski CRCZ concept 
where the complex flow region of Figure 4.13 is transferred deeper into the melt and 
where the liquid fraction within the ring can be separated from bulk melt flow under 
optimized conditions (Scheel 1995). 
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and reduced striations. Numerical simulations of CRCZ have started (Kakimoto 
2002; Zhong Zeng 2001), but the growth technology has yet to be developed. 

4.7 DISCUSSION 

Several experimental and theoretical solutions were presented to overcome the 
as intrinsic regarded striation problem: 

1. ko, D, v, 8 = constant:, very difficult; chance with rotating 
seed (Figure 4.12) & with CRCZ 
(Figure 4.14) 

2. ko, D, v = constant; 8 may vary Rytz & Scheel 1982; Scheel and 
Sommerauer 1983; Scheel and 
Swendsen 2001 

3. keff = 1 for growth from melt: Mateika 1984 
4. keff = 1 for growth from solution: Scheel and Swendsen 2001 
5. Avoid solid solutions by growth of simple stoichiometric compounds 

with well-defined site distribution from ultra-pure chemicals 

Further conditions are 

(a) Continuous flat or smooth growth surface 
(b) Isothermal growth surface with ~T IT < 10-5 

(c) Homogeneous melt or solution with ~nln < 10-6 

(d) Constant growth rate with ~vlv < 10-5• 

These indicated tolerances are typical values and depend on the individual sys­
tem and on the tolerated inhomogeneity of the crystal. Therefore it is advisable 
to analyze a-new growth system and the phase relations theoretically so that the 
required technological parameters can be established. With respect to optimized 
hydrodynamics, simulation experiments with a liquid of similar kinematic vis­
cosity are very useful in the early phase and may be complemented by numerical 
simulation for process optimization. However, the latter require reliable material 
(liquid) parameters, which often are not available. In certain cases dimensionless 
numbers may be helpful to get a feel for the convection regime. 

In conclusion, one can say that the striation problem is solvable (on e.arth) but 
requires a certain theoretical and technological effort. Hydrodynamic fluctuations 
are not harmful as long as the fluid is sufficiently isothermal, as long as the 
transport of fluid of different temperature to the growth interface is suppressed. 
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