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Abstract 

In this paper, we discuss the experimental conditions required to grow large two-component crystals from 
homogeneous solid solutions. Building on the work of Burton, Prim, and Slichter and that of Van Erk, we are able to 
establish that the concentration fluctuations for diffusion-limited growth are rather insensitive to hydrodynamic 
fluctuations. This enables a crystal grower to take advantage of forced convection to optimize growth rates without 
aggravating the striation problem. © 2001 Published by Elsevier Science B.V. 
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1. Introduction 

Mixed crystals or solid solutions are special 
cases of alloys in which two or more types of 
atoms or molecules occupy a given type of lattice 
site in a coherent crystallographic phase. 

Solid solutions are playing an increasingly large 
role in research and technology, both for intrinsic 
advantages and because they allow physical, 
chemical, and electrical properties to be optimized 
for specific purposes by varying the concentration 
x. Some typical examples are 
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(a) In semiconductors for optoelectronic applica­
tions the bandgap can be tuned for the required 
emission or absorption wavelengths or for 
optimized mobility, as well as adjusting the 
lattice constant to match the available substrate 
material for epitaxial growth. For example, the 
solid-solution system Gal_xlnxAsl_yPy (for 
injection lasers and detectors in optical com­
munication systems [I]) enables the frequency 
to be matched to the low-loss windows of glass 
fibers at 1.3 and 1.55 j.lm. 

(b) Improvement of the resistance of solar cells to 
radiation and thermal damage has also been 
demonstrated, based on solid solutions of 111-
V compounds. This allows up to lOOO-fold 
concentration of the sunlight compared with 
the low-cost silicon solar cell [2]. 

0022-0248/01/$ - see front matter © 2001 Published by Elsevier Science B.V. 
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(c) In certain cases, specific effects may be 
obtained in solid solutions, which are not 
observed in the constituents. The very high 
dielectric constants near phase transitions can 
be used for electro optic, non-linear optic and 
acoustooptic applications by adjusting Tc to 
match the temperature at which it is to be used 
(usually room temperature). In the system 
KTal_xNbx03, this can be achieved with 
x < 0.35 for a phase transition slightly below 
room temperature [3-5]. 

(d) Solid solutions also exhibit a hardening effect, 
which can improve the mechanical properties 
with single-phase material [6]. 

For these and other applications, the availability 
of high-quality crystals or crystalline layers of 
solid solutions is essential. For certain applications 
(e.g., optical cases (c) above), the requirements on 
the homogeneity are extreme, whereas for most 
applications small concentration variations in the 
crystals are not as critical. Naturally, methods for 
growing such crystals must deal with all the usual 
problems encountered in the growth of pure 
crystals: structural inhomogeneities (such as grain 
boundaries, domains, dislocations, strain), vacan­
cies, and interstitial defects. However, the produc­
tion of bulk crystals of solid solutions is 
considerably more difficult than the production 
of pure crystals, owing to the necessity of 
controlling the compositional homogeneity by 
the growth process itself. In particular, there are 
two types of compositional inhomogeneity pro­
blems that will be dealt with in this paper. 

• Bulk concentration gradients produce a varia­
tion of the important properties along the 
growth direction and should be avoided, since 
their presence restricts the size of useful 
material that can be obtained. The tolerated 
limit depends on the material and the applica­
tion. For example, in KTal_xNbx03 (KTN), x 
should be constant within 50 ppm [3] for 
electro optic and non-linear-optic applications. 

• There is a strong tendency for fluctuations in the 
growth conditions to produce a fluctuating 
concentration along the growth direction, known 
as growth bands or striations. The suppression of 

striations represents an old problem in crystal­
growth technology, and several authors have 
described striations as an "inherent", "intrinsic" 
or "unavoidable" phenomenon in crystal growth 
[7], which has prevented the technological appli­
cation of otherwise interesting materials [8,9]. 

The microscopic distribution of the components 
and the degree of short-range order will not be 
considered here. 

The characterization of solid solutions in terms 
of the homogeneity requirements presents formid­
able problems. The macroscopic variation of the 
composition across the crystal is relatively easily 
detected with chemical and physical characteriza­
tion methods (see Chapter 9 of Ref. [10]). The 
quantitative evaluation of fluctuating composition 
and the analysis of both periodic and irregular 
striations is considerably more difficult, especially 
when the characteristic width is less than IO/lm 
and the concentration, or the concentration 
variation, below 1 % (Chapter 9 of Ref. [10]). 

In this paper, we discuss the experimental 
conditions required to grow large two-component 
crystals of homogeneous solid solutions. In the 
absence of a general theory for the growth of 
mixed crystals from all types of solutions or melts, 
we have considered the situation for the extreme 
limits growth from melts and from dilute solu­
tions, for which previous authors have discussed 
certain features of the problem. 

We base the analysis of growth from melt on the 
classic work of Burton, Prim and Slichter (BPS) 
[11], which attributes the major effect of the 
growth rate on the distribution coefficient to the 
transport processes in the melt. Van Erk (VE) [12] 
published an extensive discussion on the segrega­
tion effects in the growth of solid solutions from 
simple dilute solutions. The BPS and VE analyses 
have been used to evaluate the experimental 
parameters for the growth of solid-solution 
crystals of good homogeneity. Since the results 
for both limiting cases are qualitatively identical 
and even remarkably similar quantitatively, there 
is reason to believe that our conclusions have 
rather general validity. 

After a discussion of the theory of segrega­
tion phenomena in Section 2, we establish the 
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requirements for achieving homogeneous solid 
solutions. The sensitivity of the concentration 
fluctuations to fluctuations in the growth para­
meters is derived on the basis of the work of BPS 
and VE. As has been known for some time, we 
show that it is essential for the temperature 
fluctuations to be minimized to reduce striations. 
However, we also establish that the concentration 
fluctuations for diffusion-limited growth are rather 
insensitive to hydrodynamic fluctuations. This 
enables the crystal grower to make use of the 
advantage of forced convection, in contrast to the 
widespread opinion that convection should be 
minimized to reduce the striation problem. 

In Section 3, the problems of achieving uniform 
solid solutions by growth from melt are discussed. 
In Section 4, the steady-state, near-equilibrium 
approach is described, and in Section 5 the 
possibilities and advantages of optimizing the 
solvent composition in growth from solution is 
discussed. 

2. Theory of segregation phenomena 

The concentration of mixed-crystal components 
is generally different from those of the fluid from 
which they are grown, a phenomenon known as 
segregation. For very slow growth, this is usually 
described by the equilibrium segregation (or 
distribution) coefficient ko, which is defined as 
the ratio of the concentration of a component A in 
the solid to that in the liquid 

(1) 

and may be derived from the equilibrium phase 
diagram by the ratio of solidus and liquidus 
concentrations of A at a given temperature. More 
generally, segregation depends on the growth rate 
in an important way and is described by an 
effective distribution coefficient, kef[, which will be 
discussed later. 

Segregation at the crystallizing interface leads to 
a continuous change of the composition of the 
fluid: C(Ak increases for keff< 1, and C(Ak 
decreases for keff> 1, so that the concentration 
C(A)s in the growing crystal continuously changes. 
The inherent concentration gradient (ICG) at any 

location of the growth front is given by 

C(A) = keffCO(1 - g)k,rr- 1, (2) 

where g is the fraction of crystallized material and 
Co the initial concentration as derived by Pfann 
[13,14], where it has been assumed that keff does 
not change with concentration changes or other 
growth parameters. 

Obviously, the inherent concentration gradient 
can be made zero by keeping the fluid concentra­
tion constant. This is possible by growth at 
constant temperature in combination with trans­
port of the crystal constituents in a temperature 
gradient (see Ref. [10, Chapter 7]). However, this 
method generally involves large temperature gra­
dients, which in turn lead to temperature fluctua­
tions that almost inevitably produce striations. 

If slow-cooling is required for other reasons, a 
large ratio of fluid to crystal might be sufficient to 
keep the ICG within acceptable limits, which has 
been discussed in more detail elsewhere [15]. 
Under the assumption that the growth process is 
dominated by a diffusion layer, b, beyond which 
stirring in the bulk of the fluid assures a uniform 
bulk concentration, BPS derived the equation 

kef[ = ko/(ko + (1 - ko)e- Ll
), (3) 

where 

L1 = Vb/D (4) 

with v representing the growth velocity, and D the 
diffusion constant. Eq. (3) is plotted in Fig. 1 for 
various values of the equilibrium distribution 
coefficient, ko. 

Another possible representation of the BPS 
equation arises from rewriting Eq. (3) as 

e-Ll = (k;J - I)/(ko1 
- 1). (5) 

This way of writing the BPS equation allows all 
values of ko and L1 to be represented by a single 
exponential curve. 

In Fig. 1, we have chosen to use a linear plot, 
rather than following the logarithmic representa­
tion in the original BPS paper, because we believe 
it gives a clearer picture of the physical con­
sequences. The logarithmic plot makes it appear as 
if fluctuations in the growth parameters have no 
effect on the distribution coefficient for small 
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Fig. 1. Effective distribution coefficient as a function of L1 from 
the Burton-Prim-Slichter theory for melt growth (Eq. (3». 

growth rates. If this were true, slow growth could 
be used to produce uniform crystals, without the 
necessity of carefully controlling the growth 
parameters. Unfortunately, this is not the case. 

From the BPS analysis, it is clear that a given 
concentration in the solid solution can be obtained 
in different ways by varying the concentration in 
the liquid and the effective distribution constant in 
such a way that 

(6) 

where Ct is the concentration in the bulk liquid. 
The fluctuations in the grown crystal are then 

related to the fluctuations in the effective distribu­
tion coefficient by 

(jCs/Cs = (jkeff/keff. (7) 

Since the BPS equation gives the derivative of kerr 
with respect to ,1 as 

akeff 
~ = keff(1 - keff) (8) 

we see that fluctuations in ,1 give rise to fluctua­
tions in the concentration in the solid as 

(jCs = Cs(1 - keff)(jLl. (9) 

Since the accuracy to which kerr can be kept 
constant usually depends weakly on the magnitude 
of ,1 for a given growth technique and apparatus, 
Eq. (9) predicts that the effects described by the 

BPS equation are most sensitive to fluctuations in 
the crystal-growth parameters for small k values. 
This is just the opposite of what one might expect 
by looking at a logarithmic plot of the BPS 
equation. 

To investigate the extent to which these quali­
tative features are more generally valid, we have 
considered the opposite extreme of growth from a 
dilute solution. Since Van Erk [12] has presented 
an excellent analysis of growth of a mixed crystal 
from an ideal dilute solution, we need only discuss 
the consequence of the equations he has derived. 

The analysis by Van Erk shows the effect of 
many possible variations in material and growth 
parameters. To clarify the discussion, we shall 
make a number of simplifying assumptions and 
refer the reader to Van Erk's paper for a more 
complete analysis. 

We shall consider the case of strong dilution for 
a system in which the diffusion and the rate 
constants of the two components are essentially 
equal. This corresponds to what Van Erk denotes 
as case (a). Ifwe make the further assumption that 
the growth process is predominantly diffusion 
limited, so that the Nusselt number is large, we 
can rewrite Eqs. (61) and (62) in Van Erk's paper 
[12] in terms of the same parameter ,1 [see Eq. (4)] 
that enters the BPS equations: 

In keff = In ko - (keff - 1),1. (10) 

Solutions of this equation are plotted in Fig. 2. 
Although Eq. (10) looks very different from the 
BPS Eq. (3), it is clear from a comparison with 
Fig. 1 that their solutions are quite similar. For 
small values of the growth rate (small ,1), they even 
agree numerically. As the growth rate is increased, 
they both approach k= 1, although Eq. (10) for 
solution growth does so more slowly. 

It is straightforward to repeat the analysis of the 
sensitivity of the final concentration in the solid to 
fluctuations in the growth parameters through ,1 
for dilute-solution growth. The result is 

(11) 

Eq. (11) is remarkably similar to the correspond­
ing Eq. (9) for the BPS analysis. Again, it 
decreases monotonically as k goes to unity, but 
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Fig. 2. Effective distribution coefficient as a function of L1 from 
the Van Erk theory for simple dilute solution growth (Eq. (j,». 
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the sensitivity is further decreased by the factor 
1/(1 + Akeff). 

It is necessary to note that the violation of 
assumptions we have made above in considering 
Van Erk's case (a) might have important con­
sequences. As Van Erk has shown, it is possible to 
have fewer symmetric parameters than we have 
assumed and still produce k = 1 for a particular 
growth rate. If this were the case, the conclusion 
that the concentration in the solid becomes 
insensitive to fluctuations in the growth para­
meters when k = 1 would no longer be completely 
true. We refer the reader to Van Erk's work [12] 
for details. 

It is clear from Eqs. (3) and (11) that keff 
depends essentially on the product (vb) since ko 
and D can be taken as constant within a given time 
or temperature interval of the growth process. This 
relation is also shown in Fig. 1 where the BPS 
equation is plotted for various ko values, and 
where typical parameters for crystal growth from 
melts and from solutions are given. 

Thus, the first consequence is that experimen­
tally one has to achieve steady-state conditions. 
Hydrodynamic oscillations can be suppressed by 
proper geometry, small temperature gradients, and 
control of the hydrodynamic flows by either forced 
convection (b * 0), or by pure diffusion, suppres­
sion of convection (b * ex). The temperature 

must be regulated very carefully to suppress 
growth-rate fluctuations. 

3. Steady-state growth from melts 

A large and important fraction of bulk crystals 
is grown by solidification from melts. These 
processes occur far from equilibrium with high 
crystallization rates (1-10 cm/h), large temperature 
gradients at the fluid crystal interface (50-500°Cj 
cm), and by non-equilibrium interface shapes 
("boules" with little or no facets). 

Under these conditions, growth-rate fluctua­
tions are induced by temperature oscillations 
coupled to oscillatory convection [16]. Witt and 
Gatos [17], Witt et ai., [18] and others have shown 
by time markers and etching studies that signifi­
cant differences between the microscopic (instan­
taneous) and macroscopic (average) growth rates 
occur in Czochralski growth of semiconductors. 
The resultant striations mayor may not be 
correlated with the crystal rotation rate (rotational 
striations), and Carruthers and Nassau [19] have 
demonstrated various complex convection pat­
terns due to interference between forced and 
natural convection. 

Since the temperature fluctuations at the growth 
interface were related to convective instabilities 
[16], most efforts were devoted to suppressing all 
convection. Buoyancy-driven convection was 
reduced by baffles [20], shallow melts [16], convec­
tion-free cells [21], or reduction of the temperature 
gradients [16]. Crystal-growth programs were 
also initiated under reduced gravitation: Skylab, 
Apollo-Soyouz Test Program (ASTF), Texus, and 
in the future Spacelab. However, it was soon 
realized that experiments in space provided only 
microgravity (not zero gravity). "g-jitter" was 
present and the important role of Marangoni 
convection in space as well as on earth was 
recognized. 

The requirement of mllllmum temperature 
gradients in combination with the reduced-con­
vection approach presents severe problems. Mate­
rial transport is slow and the melt is not 
homogenized. Interfacial stability requires a slow 
growth rate because of the lack of a stabilizing 
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temperature gradient and the need to remove the 
evolved latent heat of crystallization. 

Forced convection has been proposed as an 
alternative to minimize the effects of oscillatory 
convection [22-24]. It would have the advan­
tages of homogenizing the melts, enhancing 
material and heat transport, and increasing 
interface stability. A specific proposal involving 
the accelerated crucible rotation technique 
(ACRT) in Czochralski growth [25] has been 
supported by numerical simulation studies [26,27] 
as well as experiments on Czochralski-grown 
silicon. The main difficulty is the necessary 
temperature control (±O.OloC in KTN). This 
requires a reduced temperature gradient and 
correspondingly reduced growth rate at the 
expense of improved crystal homogeneity with 
this approach. 

4. Steady-state growth near equilibrium 

A reduction of the growth rate in melt growth, 
generally at high temperatures, would be imprac­
tical with respect to experimental duration, energy 
consumption, crucible corrosion, etc. and would 
require enormous efforts on the control of all 
growth parameters; a reduction of the steady-state 
growth rate by say three orders of magnitude 
would require an improvement of temperature 
control by the same factor! A specific problem is 
the moving growth front, which must be main­
tained constant to within about 0.01-0.1 °C de­
pending on the required homogeneity of the solid 
solution, and on the slope of the solidus in the 
phase diagram. The required spatial uniformity 
and temperature stability demand a constant heat 
flux through the crystal and through the fluid, and 
a constant growth velocity. 

Whereas a constant heat flux through the crystal 
can be achieved with most crystal-growth techni­
ques, the other requirements present severe pro­
blems. A constant growth velocity can only be 
obtained if there is a single growth mechanism. 
There must either be growth on a facet with 
(nearly) monomolecular steps [28,29], growth on a 
surface with constant curvature, or growth on a 
rough surface at a high deposition rate. 

The difficulty of maintaining steady-state con­
ditions at the moving solid-liquid boundary 
increases with increasing growth rate, and Landau 
[30] has shown that for critical parameters (growth 
rate, segregation coefficient), near the morpholo­
gical stability limit, an oscillation of the growth 
rate may occur leading to striations or to inclusion 
bands parallel to the growth interface. 

These problems can be reduced by utilizing 
near-equilibrium conditions, and by diluting the 
system with a solvent so that the concentration of 
the crystal components typically lies between 5% 
and 30%. This allows a lowering of the growth 
temperature T (growth) to -0.5 T (melting), with 
small temperature gradients at the interface. 
Equilibrium surfaces (facets) are formed, which 
may be extremely flat if sufficiently small super­
saturations are used [28,29,31] (see also Chapters 
4-6 for Ref. [10]). 

By diluting the components with a solvent, the 
growth process becomes limited by mass transport: 
coupled diffusion of crystal constituents towards 
the interface and of solvent away from the crystal. 
Compared to melt growth, the growth rate is 
reduced by 3-4 orders of magnitude, to values 
between 50 and 5000 A/s. According to the 
diffusion-boundary-Iayer concept of Nernst [32], 
the growth rate v is then given by 

(no:; - ne)D 
v=---,--

Pcb 
(12) 

for the diffusion-limited regime, neglecting the 
comparatively fast interface kinetics. Here ne and 
noo are the equilibrium and the effective bulk 
concentrations of the solute (of density Pc) in the 
solution, respectively. 

Changes of keff are determined essentially by the 
product (vb), and ko and D are practically 
constant. Since the growth rate v is inversely 
proportional to b, the product (vb) also remains 
practically constant when b, or the hydrodynamic 
flow rate u, changes. Hydrodynamic fluctuations 
are thus compensated by corresponding growth­
rate changes. However, growth-rate changes 
caused by temperature oscillations are not com­
pensated and thus lead to change of keff and to 
striations. Temperature gradients have to be 
minimized so that forced convection is sufficient 
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to provide the constant temperature required at 
the growth interface. Even periodic changes of the 
stirring action (as in reciprocating stirring of seed 
crystals in aqueous-solution growth and as in 
ACRT in high-temperature solution growth) will 
not induce striations as long as the temperature 
gradients are sufficiently small. Accordingly, the 
assumption that hydrodynamic oscillations auto­
matically lead to inhomogeneities is only valid for 
crystal growth at large temperature gradients 
(G? IOCjcm). Hydrodynamic oscillations do not 
cause striations by themselves. 

5. Growth with k = 1 

A constant effective distribution coefficient of 
unity would clearly solve the striation problem in 
melt growth. However, except for special cases, ko 
is not unity and k eff = 1 can only be obtained by 
extremely fast solidification rates. High growth 
rates might be acceptable for one-dimensional 
crystals (whiskers or rods) or in two-dimensional 
crystals (plates or epitaxial layers), but for the 
growth of bulk crystals, much slower growth rates 
are needed. 

The use of solutions provides an additional 
degree of freedom, since the effective distribution 
coefficient is also dependent on the properties of 
the solvent and the solvent-solute interactions. 
Systematic experiments with oxide solid solutions, 
using different solvents and mixtures of solvents 
have shown that both k eff > 1 and k eff< 1 are 
possible for a given oxide solid solution. By proper 
mixing, it is then possible to "tune" the solvent 
mixture to obtain k = I and thus eliminate the 
segregation problem. An example is given by the 
perovskite solid solutions Gd 1_ xLaxAI03 and 
Gd 1_ xYxAI03, which are grown from solvent 
mixtures with the major components PbO, and 
Bi20 3 and PbF2. The effects of the minor 
components of the solvent mixtures (excess 
Ab03, B20 3, and PbF2. The effects of the minor 
components of the solvent mixtures (excess Ab03, 
B20 3, V 205) have not yet been studied. 

In Fig. 3, the measured effective distribution 
coefficients of the La and Y dopants in GdAI03 
are shown as a function of the oxide-fluoride 
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Fig. 3. Dependence of the effective distribution coefficient on 
solvent composition for growth of La-doped and Y-doped 
GaAI03· 
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Fig. 4. Dependence of keff on solvent composition for growth 
of Cr-doped Y 3Fes012 using experimental data of Krishnan 
[33]. 

solvent composition. For a pure oxide flux, keff for 
La in GdAI03 is nearly four, whereas for equal 
concentrations of oxide and fluoride, keff is smaller 
than 0.5. At a composition of about 37mol% 
PbF2, k eff = I is obtained. In the case of Y-doped 
GdAI03, a nearly fluoride-free solvent is required 
to obtain k eff = 1. 

An example of garnet solid solutions grown 
from PbO-PbF2 mixtures is shown in Fig. 4, using 
data published by Krishnan [33]. Here keff for Cr 
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in yttrium-iron garnet increases with increasing 
PbF2 concentration; about 32mol% PbO should 
give keff= 1. 

Further measurements are naturally necessary 
to determine how widely this approach is applic­
able, but it is clear from these examples that it is 
very promising. 

6. Conclusions 

Crystal growth of solid solutions has been a 
well-recognized problem for many years. Since 
homogeneous crystals can only be expected from a 
steady-state growth process, the steady-state ap­
proaches to the segregation phenomena can be 
applied to derive the critical technological para­
meters for the experimental crystal grower. The 
Burton-Prim-Slichter analysis of growth from 
melts, and the Van Erk analysis of growth from 
diluted solutions are quite similar and show only 
quantitative differences; the diffusion barrier in 
growth from solutions leads to a smoother 
dependence of keff on growth parameters com­
pared to growth from melts. 

The temperature at the growth interface (or of 
the fluid in front of it) is the crucial parameter and 
must be controlled with a precision that is difficult 
to achieve in growth from melts. It is easier to 
achieve by using solutions. Temperature gradients 
can be reduced so that application of forced 
convection in combination with extremely precise 
temperature control gives the temperature stability 
required at the interface. 

The most important feature is that hydrody­
namic fluctuations are not necessarily harmful. 
Their effects are largely compensated by growth­
rate changes so that the exponent in the BPS 
equation remains practically constant. Hydrody­
namic fluctuations are only harmful when large 
temperature gradients in the fluid lead to (oscilla­
tory) transport of fluid parts with different 
temperature to the growth interface thereby 
causing striations. 

In crystal growth from high-temperature solu­
tions, the type of supersaturation determines 
whether the crystals have minimum striations 
(slow-cooling technique) or a minimum inherent 

concentration gradient (gradient-transport techni­
que). 

One important aspect has been discussed very 
briefly in this paper; namely, the role of the 
interface morphology and of the growth mechan­
isms on the homogeneity as this was published 
earlier [28]. Thus, it has been shown in this paper 
that small temperature gradients, forced convec­
tion (or alternating flow), and high-precision 
temperature control are the main requirements 
for the growth of bulk crystals of homogeneous 
solid solutions. 
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