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Abstract 

By analysis of liquid phase epitaxial (LPE) growth experiments of GaAs multilayer structures, the incorporation 
rates at elementary growth steps (kinetic coefficients) are estimated. Conditions are presented to prepare large 
singular surfaces with several micrometers distances between regular elementary steps. Such quasi atomically flat 
surfaces may become important for applications in semiconductor and superconductor technologies, in surface 
physics and catalysis, as reference planes, and also as substrates for fabrication of extremely homogeneous layers and 
perfect superlattices. 

1. Introduction 

Surface and interface flatness is an important 
factor in quantum electron devices [1], multilayer 
optical waveguides [2], and in tunnel junctions 
based on high-temperature superconductors with 
their very short coherence lengths [3]. Other ap­
plications of nearly step-free surfaces are in sur­
face physics and in studies of the role of steps in 
catalysis. Further applications of extremely flat 
surfaces make use of the perfect homogeneity of 
layers and multilayers grown on these facets by 
the single-step-flow mode. This is explained by 
the sensitivity of the dopant incorporation to the 
surface topology: the distribution coefficient de­
pends on the local step density [4], and bunched 
steps (macrosteps) give rise to striations [5,6]. On 
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vicinal faces the density of macrosteps is increas­
ing with the increasing angle of misorientation, 
and it is also influenced by supersaturation and 
by surface kinetics [4,7]. 

A number of techniques and approaches were 
tried to achieve flat surfaces. Physical vapor de­
position methods like molecular beam epitaxy 
(MBE), sputtering, laser ablation, etc. may yield 
on average flat surfaces which, however, have 
high step densities. The mean distance between 
steps is 10-50 nm, and it is difficult to achieve 
inter-step distances of greater than 100 nm. The 
limits of MBE methods can also be explained in 
terms of non-equilibrium growth. 

However, liquid phase epitaxy has the poten­
tial to achieve near-equilibrium growth on well­
oriented surfaces with large interstep distances 
[6,8], rather than the step-flow mode at small step 
distances on vicinal surfaces [9-11]. This has been 
demonstrated by means of a sliding-free LPE 
technology [12] in multilayer LPE of Sn- and 
Ge-doped GaAs onto slightly misoriented sub-
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strates. The spreading of the facet at the expense 
of the adjacent vicinal surface was observed [6] 
whereby simultaneously the number of growth 
hillocks was reduced. Typically, one or two growth 
centers were observed, either at the rim or near 
the center of the facet, and thus the activity of 
the other screw dislocations was suppressed. The 
facets showed a regular sequence of steps of 0.65 
nm height [13] and a mean step separation of 6 
Mm. These singular F facets [15] are close to 
equilibrium, in the sense of Gibbs, Wulff and 
Herring [14]. In other words, the near-equi­
librium slider-free LPE growth allows macroscop­
ically flat surfaces and interfaces. 

In this paper the earlier LPE experiments of 
Scheel [6] are analyzed to evaluate the kinetic 
coefficient for steps in LPE of GaAs in Section 2. 
The time-dependence of the transformation to 
facets is derived in Section 3. In Section 4 the 
experimental conditions required for achieving 
large facets with minimum step density are dis­
cussed. 

2. GroWth modes and kinetic coefficient for steps 

The estimation of the kinetic coefficient for 
steps in LPE-grown GaAs is based on earlier 
experiments. The multilayer structures of alter­
nating p- and n-GaAs [6] have been angle-lapped 
and etched in order to reveal the surface topol­
ogy at the edge E between the facet F and the 
misoriented stepped surface S. This is schemati­
cally shown for two subsequent positions of the 
interface in Fig. 1. The growth velocities RF and 
Rs of the facet and of the stepped surface are 
taken perpendicular to the singular crystallo­
graphic plane. In two experiments, the angle Ps 
between the F- and S-faces was 0.165° (2.9 X 10-3 

rad) for experiment L17A and 0.573° (10- 2 rad) 
for experiment L19B. The facet itself has an 
extremely small misorientation with the crystallo­
graphic [111] direction, namely '" 20 seconds cor­
responding t6 1.1 X 10-4 rad given by the regular 
train of elementary steps of 6.5 A height [13] and 
6 Mm mean interstep distance. 

The noticeable growth rate ratios Rs/RF of 
1.5 for L17A and 1.7 for L19B, rather than 

Fig. 1. Schematic view of two successive stages of the growth 
surface near the edge E between the stepped surface Sand 
the facet F. The angle Ps between the S- and F-surfaces as 
well as the growth rates R s, Rp and layer thicknesses ds, dp 
are indicated. 

Rs/RF = 1 indicate that the growth of the facet is 
at least partially limited by surface kinetics, 
whereas for the S-face the diffusion limited 
regime is expected. The thickness ds of the layers 
grown on the S-face may be derived from the 
standard relationship [16,17] 

( 
~ T ac ) ( D ) 1/2 

d s = d Sl + d S2 = 2 C
s 

a; 7r t
1

/
2 

( 
t ac ) ( D ) 1/2 

+ t C
s 

a; 7r t
3

/
2

, (1) 

where d Sl and d S2 are the thicknesses due to the 
initial undercooling ~T and the permanently de­
creasing temperature t = dT /dt, t being "the 
time. Taking the data of the equilibrium concen­
tration of As in Ga solution at 820°C Ce = 2.6 
at % = 1.32 X 1021 cm -3, aCe/aT = 1.12 X 1019 

cm - 3 K -1 , the As concentration in the GaAs 
crystal Cs = 2.2 X 1022 cm -3, the diffusivity D = 
5 X 10-5 cm2/s, the experimental parameters ~T 
= 1.7 K, t = 3.5 K/h and the growth time per 
layer t = 600 s, one obtains from Eq. (1) dSl = 1.7 
Mm, d S2 = 0.43 Mm and thus ds = 2.13 Mm. This 
value should be compared with the measured 
value of 2.44 Mm for the first layer and an aver­
age layer thickness of 2.3 Mm. A more precise 
calculation is meaningless since the loss of As 
vapor during the experiment was not measured. 
Nevertheless, we may conclude from the layer 
geometry and the above estimation that the 
stepped surfaces grow in the diffusion-limited 
regime whereas the growth rate of the facets is 
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partially controlled by surface incorporation ki­
netics. 

From the above experimental data one can 
estimate the kinetic coefficients {3st of an elemen­
tary step and {3 of a stepped surface. These 
coefficients are defined as factors of proportion­
ality between the step or the S-face growth rates, 
v or R, respectively, and the dimensionless driv­
ing force 1lJ.L j kT for crystallization immediately 
at the step or at the interface, respectively: 

v = (CjCs) {3st ll J.LjkT; 

R = (CjCs){3IlJ.LjkT. (2) 

Here 1lJ.L is the chemical potential difference of 
the crystallizing species in the solution and in the 
crystal, and C is the solute concentration at the 
step or at the surface. We assume C < Cs, and 
the ratio C j C s corresponds to the probability of 
finqing the crystallizing species just at the step or 
at the surface site, whereas the kinetic coeffi­
cients represent the average incorporation rates. 
For dilute solutions like As in Ga, CjCs « 1. As 
a first approximation the relative supersaturation 
(C - Ce)jCe = llJ.LjkT thus giving 

Csv = (3st( C - Ce); CsR = (3( C - Ce). (3) 

The mass conservation law at the step and at the 
interface gives 

D aCjar = (Cs - C)v = (1- CjCs) {3st( C - Ce), 
(4) 

and 

D aCjan = (Cs - C)R = (1- CjCs){3(CjCe ). 

(5) 

Here the step is considered as a cylindrical sink, 

'rable 1 
Kinetic coefficients for growth from solutions and from melts 

Growth system Density 

Aqueous solution 
Flux growth and LPE of garnets 
Si from melt (Tm = 1687 K; as/k = 2.83) 
Pb from melt (Tin = 600 K; as /k = 1.03) 
LPEofGaAs 
YBCO 

ratio a 

0.03-0.3 
0.2-0.3 
0.91 
0.94 
0.06 
0.05 

and ac jar in Eq. (4) is the radial derivative taken 
at an effective radius of the order of the step 
height. Similarly, ac jan is the derivative with 
respect to the normal to the interface. 

According to the step height h = 6.5 A the 
parameter [18] ({3sthj7rD) In I pi «1, and thus 
the kinetic coefficient {3 for the vicinal face, 
declined from the singular orientation by a small 
angle (say with the tangent p::::: 1.1 X 10-4 in 
experiment L17 A) is just 

(6) 

Since the precise dependencies of the facet 
growth rate R F on supersaturation and on time 
are not known, we assume for simplicity a linear 
approximation of the concentration within the 
boundary layer 0, and the corresponding growth 
rate is, by using Eqs. (5) and (6), 

Cs - Ce 1 
R = . (7) 

Cs - Ce Ij{3stp + 0 jD 

Here C s is the concentration in the bulk liquid in 
contact with the boundary layer of thickness 0, 
and the modulus symbol used in Eq. (6) is o1Jlit­
ted. The ratio RsjRF obtained from Eq. (7) for 
the face F, p = PF' and S, p = Ps, gives 

(3st O (RFjPF) - (Rsjps) 

D Rs -RF 
(8) 

Taking PF = 1.1 X 10-4 for both experiments 
L17 A and L19B (although these values should 
slightly differ), and Ps = 2.9 X 10-3 and 10- 2

, 

and the measured growth rates Rs and RF from 
Ref. [6], one gets 

(9) 

f3~, f3T b 

(cm/s' K) 
f3 st , f3~ kT / as 
(cm/s) 

Ref. 

50 
28.7 

10-3_10- 1 

10-3 

3 X 104 

1.7 X 104 

1-10 
_10- 2 

[20,21] 
[22-24] 
[25] 
[19] 
This work 
Estimate, this work 

a Density ratio";' density of crystallizing species in solution/density of the species in the crystal. 
b For melts. 
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With 0 = 2{i5i = 0.35 cm (D = 5 X 10-5 cm2/s, 
t = 600 s) and 0.24 cm (t = 300 s) the values of 
Eq. (9) give f3st = 2 and 4 cm/s for experiments 
L17 A and LI9B, respectively. Thus a value of 
f3st = 3 cm/s may be taken as a first estimate of 
the step kinetic coefficient. In these LPE experi­
ments a modest forced convection was applied by 
oscillatory rotation of the container. The reduced 
effective boundary layer thickness would lead to a 
larger value of f3st of about 10 cm/s. For a more 
accurate determination of f3st and f3 = f3st I pi, 
one would need experimental data at various 
supersaturations in order to obtain the expected 
non-linear dependence of the facet growth rate 
R F on the supersaturation at the growing inter­
face. 

Our estimated values of f3st::::: 1-10 cm/s for 
growth of GaAs from Ga solution should be 
compared with other systems. This is done in 
Table 1 where data of different systems of growth 
from solutions and from melts are given. In the 
latter case the atomically rough interface and the 
step have similar kinetic coefficients f3~::::: f3T. 
The coefficients f3~ and f3T for melt (cm/s . K) 
and f3sP f3 for solutions are related by the equa­
tion f3 = (f3i/ AS)(Cs/C), where AS is the en­
tropy of fusion. From the values given in Table 1 
it can be seen that the kinetic coefficient for 
LPE-grown GaAs lies between the smaller values 
for growth from aqueous solutions and for flux 
growth of garnets on the one hand, and the much 
larger values for crystallization of Pb and Si from 
melts. This is understandable in view of the high 
desolvation barrier (10-20 kcal/moI) that an ion 
or molecule has to overcome. to be incorporated 
in the lattice in growth from solutions. Noticeable 
changes in chemical bonding should be expected 
in oxide garnet systems as well. In analogy one 
would expect a similarly low kinetic coefficient 
also for high-Tc superconducting cuprates like 
YBa2Cu307-x' In contrast, melt growth seems to 
be a barrier-free process [19,20]. The intermedi­
ate values of f3st for GaAs show that for the 
growth from' Ga solution a potential barrier for 
incorporation into the crystal still exists, although 
it is lower than that for growth from aqueous 
solutions where the solvent is not incorporated in 
the crystal. 

3. Faceting time 

For practical applications, i.e. for fabrication 
of facets of large size L, it is worth knowing the 
required time t L' This time is derived in the 
following for the stagnant solution with the diffu­
sion-limited growth regime of the S-face, and for 
the stirred solution where bulk diffusion is as­
sumed to be negligible. 

3.1. Stagnant solution 

The edge E moves along the face F with the 
rate [4] (see Fig. 1) 

v=(Rs-RF)/(PS-PF)' (10) 

Since Ps and PF are time independent one has 

L= itLv dt= [dS(tL) -dF(tL)]/(PS-PF) 
o 

:::::[ds-dF]/ps' (11) 

The last approximate equality in Eq. (11) is valid 
since PF «Ps. The function ds(t) is given by Eq. 
(1). To find dF(t) the solution of the non-steady­
state diffusion equation with the non-linear 
boundary condition at the facet growing by the 
screw-dislocation (or by the two-dimensional nu­
cleation) mechanism should be found. Instead, 
we used in the Appendix the quasi-steady-state 
linear approximation, which was already em­
ployed to obtain Eq. (7), and got as result 

L ~ 2PS1dof[ VI + (xH + htt )t l
/

2 -1] ~t, 
(12) 

with do and X defined by Eqs. (A.5). 
The estimate with f3st = 2 cm/ s, h = 6.5 A, 

kT = 1.5 X 10- 13 erg, W = 4.54 X 10-23 cm3, a = 
300 erg/cm2, D = 5 X 10-5 cm2/s, Ce = 1.32 X 
1021 cm-3, aCe/aT = 1.12 X 1019 cm-3 K- 1 and 
Ps = 10-4 gives x::::: 0.6 K- 1 S-1/2. For AT= 0 
the time-dependent part in brackets under the 
square root of Eq. (12) does not exceed unity 
except for t 3

/
2 < 4/(9XT). For this inequality 

with T = 10-3 K/s = 3.6 K/h the time t < 102 
S 

is needed. Even shorter times may be considered 
as an initial growth period if T = 0 and AT is of 
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L [cm] 

2.5 

2.0 

1.5 

1.0 

0.5 

50 100 150 200 

[h] 

Fig. 2. Development of the facet size L with time according to 
Eq. (14), using the parameters given in the text, for various 
cooling rates at a fixed angle Ps = 0.1°. (c:J) dT /dt = 0.1 
K/h; (.) dT/dt=0.5; (a) dT/dt=l; (~) dT/dt=2; (.) 
dT /dt = 3; (0) dT /dt = 4; (A) dT /dt = 5. 

the order of several K. However, the most inter­
esting part of the solution is the long-term experi­
ments needed to obtain large facet size L. 

In this case, if 

xaTtl/2 + %Xtt3/2» 1 and t» aT jt, (13) 

Eq. (12) gives 

L = 6doxtt3/4 

= 2w ( 19wCeat aCe )1/2( Dt )3/4 (14) 
Ps f3st hkT aT 7T 

With the values used above, Eq. (14) gives 

L = 3.2 X 10-7t 3
/

4 (s)jps (cm). (15) 

Thus, at t = 10-3 Kjs = 3.6 Kjh, the facet of 4 
cm length needs about 10 days growth time. Al­
though such long experiments are possible, one 
would like to shorten the time for practical rea­
sons. Graphic presentations of Eq. (14) with the 
system parameters defined above are shown in 
Figs. 2-4. In Fig. 2 the Burgers vector for the 
steps on the facet is taken as 2d(111) = 6.5 A, and 

L [cm] 

2.5 

2.0 

1.5 

1.0 

0.5 

50 100 150 200 
[h] 

Fig. 3. Facet development for a fixed cooling rate of 1 K/h 
and two misorientation angles Ps = 0.05° and 0.1° (same pa­
rameters as Fig. 2). 
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Fig. 4. Curves representing different times required to de­
velop a facet of size L = 2.5 cm as a function of cooling rate t 
and misorientation angle Ps (same parameters as Fig. 2). 
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the misorientation angle is fixed at Ps = 0.1°. The 
times t to arrive at the facet sizes L are reduced 
at higher cooling rates as long as 2D-nucleation 
and step bunching are prevented, up to about 2 
K/h. Above this supersaturation limit also the 
tendency to growth instability is increasing. Fig. 3 
shows for a fixed cooling rate of 1 K/h the facet 
development for two different misorientation an­
gles. The relation cooling rate and misorientation 
angle is presented in Fig. 4. Lines of equal times 
required to reach L = 2.5 cm are shown. Again, 
above about 2 K/h (for this specific growth sys­
tem) the tendency to step bunching, 2D-nuclea­
tion, and growth instability is increasing. Ap­
proaches to fasten the spreading of the facet may 
be achieved by lowering the activity of the step 
source by, for example, dislocations possessing 
elementary Burgers vectors rather than larger 
ones (quantity h in Eq. (14)). The same measure 
would prevent step bunching. If the facet were 
dislocation-free, and the supersaturation would 
be kept below the level needed for 2D-nuclea­
tion, then R p would be negligibly small, and with 
d p = 0 one would have from Eq. (11) 

d s 
L = - (16) 

Ps' 

with d s obeying Eq. (1). An example of a practi­
cal solution is epitaxial lateral overgrowth [26] by 
liquid phase epitaxy. Another approach consists 
of reducing the diffusional limitation of the 
growth rate of the stepped surface, and this is 
discussed in the next section. 

3. 2. Forced convection 

From the various stirring techniques in LPE 
[27] the rotating substrate is the most advanta­
geous. The analysis of the flow towards the rotat­
ing disc by Cochran [28] and the study of the 
distribution relations by Burton, Prim and Slichter 
[29] have established a uniform diffusion­
boundary-layer thickness which can be adjusted 
by the rotation rate. When the step density of the 
facet Pp is known the growth rates Rp and Rs 
can be estimated from Eq. (7). For low supersatu­
rations corresponding to Rp« Rs one arrives at 

the most favorable condition Eq. (16), with the 
supersaturation 

ufJ« 19waD/8f3st hkT. (17) 

With the parameters given above, and assuming 

f3st = 2 cm/s, 8 = 10- 1 cm, 

ufJ = (CfJ - Ce) ICe = 10-3 and Ps = 10-4
, 

one obtains 

L = DwCeufJ t/P S8 ::::: 3 X 10-4 t (cm). (18) 

Thus, a facet of 10 cm diameter may be grown in 
less than one day. 

The required low supersaturation can be 
achieved by programmed slow cooling of the solu­
tion, by material transport from a solid source in 
a temperature gradient, or for volatile compo­
nents (As in the case of GaAs) by transport via 
the gas phase. The programming of the supersat­
uration should take into account that with in­
creasing size of the facet relative to the stepped 
part of the surface the rate of solute precipitation 
has to be reduced accordingly during the experi­
ment. 

4. Experimental conditions to achieve large facets 

From the foregoing discussions one can derive 
the theoretically expected requirements for the 
technical realisation of extended faceted surfaces 
of excellent flatness by epitaxial layer deposition: 
homoepitaxy is preferred, and in case of het­
eroepitaxy the misfit between substrate and layer 
has to be extremely small «< 0.2%) in order to 
achieve the Frank-Van der Merwe layer-by-layer 
growth mode. To minimize the step density, 
growth conditions excluding two-dimensional nu­
cleation should be applied. In view of a signifi­
cant layer thickness required to achieve the 
spreading of a large facet, the misfit has to be 
small enough to prevent cracking and propaga­
tion of cracks. If misfit dislocations are to be 
avoided the demands for low misfit become even 
more stringent. Also the thermal expansion coeffi­
cients of substrate and layer should be similar to 
avoid cracking and bending of the surface. 

Another requirement is based on the fact that 
the rate of facet spreading is inversely propor-
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tional to the misorientation angle. Thus, one 
needs a specific small misorientation of the initial 
substrate surface, as with large misorientations of 
say more than 0.2° or 0.3°, the time to achieve 
complete faceting becomes excessively long. Simi­
larly a sufficiently high growth rate is required 
under growth conditions where the facet still 
continues to grow in the regular step-flow mode 
and is thermodynamically stable. In growth from 
melts this might be achieved for solids with large 
a- (Jackson) or 1- (Temkin) factors at sufficiently 
low thermal gradients. For high-melting point 
semiconductors and for oxide compounds (with 
~ications in optics, magnetics and supercon­
ductivity) the most promising approach is liquid 
phase epitaxy. In LPE the spreading of the facet is 
facilitated for the proper crystallographic orienta­
tions by the near-equilibrium growth conditions, 
and the growth rates in LPE are - depending on 
...ute concentration and growth temperature -
sufficiently high, typically 50-500 A/s. For un­
oohstrained growth of the required layer thick­
~~, a sliding-free LPE technology is to be used, 
~.it the tilting boat of Nelson (1963) or a rotat­
ing immersed substrate, or the slider-free multi­
;layer LPE process by which 3 mm facets had 
been achieved in 1980 [6]. 

Also in growth from the vapor phase the crys­
tals are normally faceted so that it can be as­
sumed that the transition to faceting can also be 
ib.chieved in vapor phase epitaxy (VPE), chemical 
vapor deposition (CVD ) and in metalorganic 
\;GP~mical vapor deposition (MOCVD). The chal­
lenge here would be to establish sufficiently high 
growth rates below the supersaturation limit for 
two-dimensional nucleation. This is expected to 
be even more difficult in physical deposition 
methods involving vacuum like MBE, sputtering, 
etc. In these cases, generally two-dimensional nu­
cleation and local step flow are observed on sub­
strates near to the singular orientation, whereas 
misoriented surfaces may provide pure step flow 
at high step densities. The development of large 
facets with small step density in MBE-like tech­
niques is hampered also by the very low deposi­
tion rates of typically 1 A/s. 

In the absence of two-dimensional nucleation, 
there has to be a source of steps like simple screw 

dislocations, multiple dislocation arrays or other 
complex defects. In the earlier LPE experiments 
[6] it was realized that during the growth of 
p-n-GaAs multilayers the dislocation density of 
the original substrate of (2-5) X 104 cm -2 was 
significantly reduced or at least no more active at 
the surface. It was not investigated whether the 
reduction of hillocks was due to annihilation or 
due to bending outwards of dislocations caused 
by strain fields at macrosteps, or both, or whether 
at low supersaturation the simple step sources 
have become inactive since surface nucleation is 
dominated by defects with large Burgers vectors. 
In any case it would be desirable in facet fabrica­
tion to achieve defined step sources with small 
Burgers vectors, and to prevent step bunching. 

5. Conclusions 

The analysis of LPE experiments of GaAs 
showed that the (111) facet is spreading even in 
the partially diffusion-controlled regime. The ki­
netic coefficient for elementary steps on the GaAs 
(111) surface was estimated for the first time. The 
value of f3st z 1-10 cm/s lies between the values 
10-3-10- 1 cm/s for growth of salts from aque­
ous solutions and of garnets from flux, and the 
values of 104 cm/s for growth of elements (Si, 
Pb) from the melt. The estimated kinetic coeffi­
cient allowed a derivation of the time required to 
obtain large ( '" 10 cm) singular surfaces with very 
low step densities as a function of substrate mis­
orientation and supersaturation. This growth time 
of typically several days for the diffusion-limited 
growth regime can be reduced to less than one 
day when effective stirring (e.g. rotation of the 
substrate) is applied. For achieving a very low 
step density, with a step separation of several 
micrometers, the supersaturation should not pass 
an upper limit where two-dimensional nucleation 
sets in. In LPE the supersaturation can be 
achieved by slow cooling, by material transport in 
a temperature gradient, or in the case of GaAs by 
transport of As in the gas phase. However, also 
vapor phase epitaxy like MOCVD may be at­
tempted to achieve large facets. 

The large crystallographically strictly oriented 
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surfaces with very low step density can be achieved 
not only on semiconductors, but also on metals, 
superconductors, oxide compounds, etc. Thus, 
these facets will be useful in surface physics and 
surface chemistry, as reference surfaces, but also 
in several device areas where flat surfaces and 
interfaces are important. As examples we men­
tion semiconducting and superconducting tun­
nelling devices and multilayer optical waveguides. 
Furthermore, substrates with these quasi ideally 
flat surfaces may be used to grow highly homoge­
neous layers and superlattices free of striations 
caused by step bunching. 
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Appendix 

We assume that first the Ga and As species 
are directly incorporated at the steps [21] gener­
ated by screw dislocations [6,13], and second that 
the cooling rate is responsible for the growth 
features, thus neglecting the initial supercooling. 
Then, the quasi-steady-state approximation (c.f. 
Eq. (7)) with the boundary layer 8 = V7rDt gives 

from which one gets: 

u = (VI + 4qut5 - 1 )/2q, 

q = f3st8hkT /19Dwa, 

The growth rate of the facet is 

hkTu 
(A.l) 

(A.2) 

RF = f3stPFWCe u. (A.3) 

Thus the thickness of a layer deposited on the 
facet is 

~dofJ/1+ x(AT+ ~tt)tl/2 -lr~t 

~ds-2do{[Vl+x(AT+*tt)tl/2 -1] ~t, 
(A.4) 

with 

19w2Ce aD 
do= -----

47rf3sthkT 
x = 4f3sthkT {7T aCe 

19wCe a V D aT' 

(A.5) 

with ds obeying Eq. (1). 
Eq. (A.4) is substituted into Eq. (11) of the main 
text and gives Eq. (12). 
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