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Theoretical and experimental evidence is presented to demonstrate that the maximum stable growth rate of 
crystals growing from slowly cooled solutions must decrease as the crystal size increases and the solute con­
centration decreases. Temperature programs derived for a constant linear growth rate are therefore unlikely 
to result in the growth of high-quality crystals. A cooling program based on the theoretical maximum stable 
growth rate is calculated, and it is shown that a constant cooling rate should give stable growth except in the 
early stage following spontaneous nucleation. Practical procedures are suggested for the growth of large 
crystals of good quality by slow cooling of high-temperature solutions. 

1. Introduction 

In most experiments for the growth of single crystals 
by slow cooling of high-temperature solutions, a linear 
rate of temperature decrease, of the order of I °C/hr, 
is used. The reason for the choice of a constant cooling 
rate is mainly one of experimental experience and con­
venience. 

The use of a constant linear growth rate and accord­
ingly non-linear temperature programs has been ad­
vocated by a number of authors for aqueous solution 
growth of TGS I

- 3 ) and for flux growth4
- 6), since the 

area of the crystal increases as growth proceeds. If the 
linear growth rate v is to be maintained constant, this 
increase in surface area must be compensated by an 
increase in the cooling rate. The adoption of a constant 
linear growth rate leads to a so-called ",3 law", in 
which the temperature change from the value at 
which crystallization commences is varied as the cube 
of the time. For a crystal of cubic shape, this tempera­
ture variation is given from the expression for the mass 
m of the crystal 

(I) 

where Pc is the density of the crystal, T-To the fall in 
temperature in time " and K the slope of the solubility 
curve. A similar relation follows for other crystal 
shapes but the numerical factor then differs from 8. The 
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deviation of the solubility curve from linearity may be 
readily included; its effect on the cooling program is 
relatively small (less than 7°{, of the total interval of 
temperature or time at any point for the example con­
sidered in section 3). Such a program has been used in 
aqueous solution growth, for example in the growth of 
large high-quality TGS crystals from seeds1

.
3

). 

On the other hand there is experimental evidence 
from aqueous solution growth 7 - II) that the stable 
linear growth rate has to decrease with increasing 
crystal size. The crucial question for the experimental 
crystal grower is whether or not one should apply a 
constant linear growth rate, whatever the total time 
required for the experiment. 

In this paper we reason that a constant linear growth 
rate and the ,3 law are not suitable for crystal growth 
by slow cooling· of high-temperature solutions. This 
conclusion is based on a number of factors which are 
analyzed. The lower solute concentration and the slower 
transport of solute at lower temperatures especially 
require a decreasing growth rate. Thus if the optimum 
growth rate is chosen as the most rapid for stable growth 
at high temperatures, the chosen value will be too great 
for stable growth at lower temperatures. 

A calculation of a temperature program taking into 
account the most important of the factors affecting 
growth stability is presented, and this indicates clearly 
that a constant linear growth rate towards the cnd of 
the cooling program results in instability. This con­
clusion has been confirmed by experiment. 



154 H. J. SCHEEL AND D. ELWELL 

In addition the temperature region where nucleation 
occurs is examined qualitatively, and the 13 law is 
shown to be inappropriate here also. An alternative 
cooling procedure is suggested. 

2. Constant or decreasing stable growth rate? 

The answer to this important question can be found 
when thc factors which determine the maximum stable 
growth rate are analyzed. 

Crystal growth from solution involves transport of 
solute, driven by the supersaturation, from the bulk 
of the liquid to a kink or step on the surface of the 
crystal. The successive stages in the transport process 
are natural convection or forced flow of the solution, 
volume diffusion of solute through the stagnant bound­
ary layer, and surface diffusion along the crystal­
liquid interface. According to their respective activation 
energies, all these transport processes will become less 
effective as the temperatur~ is lowered. 

During cooling the size of the crystal increases, 
causing an increasing boundary-layer thickness which 
again slows down the transport (volume diffusion) and 
decreases the interface stability. One significant factor 
for stable growth by the slow-cooling technique is the 
decreasing solute concentration, since growth becomes 
more difficult at lower concentrations. The conclusion 
to be drawn from the above qualitative reasoning is 
that the maximum stable growth rate has to decrease 
appreciably as the crystal grows. 

A relation between the maximum rate of stable 
growth and the size of a crystal was observed experi­
mentally as long ago as 1939 by Yamamoto 7). He 
observed the growth of alkali-halide crystals from 
aqueous solution and measured the critical growth rate 
for the incidence of inclu~ions in crystals of various 
sizes. His results led him to propose that the linear 
growth rate should decrease in proportion to the in­
crease in area of the growing face. The incidence of 
inclusions at higher growth rates was related to the 
spreading of layers across the crystal face. Under 
unstable conditions leading to inclusion formation, 
successive layers formed before the previous layer had 
covered the face of the crystal. Only one advancing 
layer could be seen on a given face at any time in the 
stable growth regime. 

The relation between crystal size, growth rate and 
interface instability has not received great attention, 

although it was stressed by Egli and Zerfoss 8
) and later 

by Egli9), Carlson 10
•
11

) and by Cobb and Wallis 6
). 

Some qualitative confirmation is, however, also avail­
able from the theoretical treatment by Mullins and 
Sekerka 12) and by Coriell and Parker l3

) for spherical 
crystals growing in solution. They showed that the 
sphere is stable only up to a certain radius, beyond 
which it becomes unstable due to a transition from 
kinetic-~ontrolled to diffusion-controlled growth. Their 
treatment is not directly applicable to crystals which 
exhibit large facets (as do most flux-grown crystals) 
but confirm a need for the investigation of size-depen­
dent stability effects. 

It 1s difficult to give a reliable, quantitative treatment 
of maximum stable growth rates because a satisfactory 
stability theory for growth from solutions taking into 
account all the relevant parameters and real crystal 
faces does not exist. In general, however, excessively 
rapid deposition of solute at a growing crystal interface 
will cause instability. This instability can be expressed 
in terms of local inhomogeneitie:; in the solute con­
centration at the interface leading to growth-rate 
variations. Inclusions will be trapped in the "valleys" 
of the resulting ir:-egular surface. 

This problem of stable crystal growth from solution 
was considered by Carlson 1 0.1 1) with reference to the 
formation of veils of solvent in ADP crystals. He speci­
fically stressed the necessity of high flow rates at the 
growing crystal faces and demonstrated a decrease of 
solute concentration with the distance from the leading 
edge of a face. In order to prevent "starvation" of 
solute the distance from the leading edge, i.e., the length 
of a crystal face, should not exceed a critical value y 

which is given by 

(2) 

Here D is the solute diffusion coefficient, PD the Schmidt 
number "/PsD, with Ps the density of the solution, 
" the viscosity of the solution, ne the equilibrium solute 
concentration and ns the concentration in the bulk of 
the solution. 

Cahn 14) also examined the condition for stable 
growth of a flat interface but assumed solute transport 
only by diffusion. He solved the Laplace equation for 
the solute distribution and concluded that stable 
growth is possible if the length of the facet is below a 
value Yl given approximately by 
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(3) 

This condition is clearly analogous to that of Carlson 
[eq. (2)] except that the critical size is found to depend 
on (ns-ne)/v rather than on the square of this quantity. 
The values of the stable growth rate predicted by eq. 
(3) for macroscopic crystals are smaller by one or two 
orders of magnitude than typical experimental values. 
A temperature program on the basis of this equation 
would thus require an unrealistically long growth 
period. The discrepancy between Cahn's theory and 
that of Carlson as well as normal practice is presumably 
due to the fact that natural convection and stirring are 
not taken into account. Therefore our further analysis 
is based on Carlson's theory. 

The condition for stable growth is expressed by 
putting y = a = 2vt as the maximum size of the crystal 
at any time t. Eq. (2) then becomes 

(4) 

where the concentration difference has been written in 
terms of the relative supersaturation (1 = (ns - ne)/ne. 

If the substitution is made for the product v3t from 
eq. (4) into the equation for the rate of mass deposition 
obtained by differentiation of eq. (I), the expression 
for the maximum stable rate of mass deposition be­
comes 

(5) 

Rearrangement of eq. (2) gives the maximum stable 
linear growth rate for a crystal of length a as 

(6) 

Eq. (6) is based on bulk transport of solute and there­
fore only realistic for macroscopic crystal lengths. 

In (6) a higher stable growth rate is predicted for 
higher supersaturation. However, even with very high 
flo\v rates, there must be a limit of the stable growth 
rate, and hence of the supersaturation, due to the sur­
face kinetic processes (which for various systems can be 
nucleation and attachment kinetics, desolvation, and 
surface diffusion) as was mentioned by Scheel 1 

5.16). 

The solute concentration (ne ~ ns) is also a decisive 
factor, as high growth rates, of the order of lOOO As -1, 

are reported for the top-seeded solution growth tech­
nique of Belruss et al. 17), where solute concentrations 
of 70-90 wt 0< are used. In more typical cases of flux 

growth, the maximum stable growth rate is 200-500 
A s - 1 (refs. 15, 18). The effect of the other parameters 
of eq. (6) on the maximum stable growth rate is mainly 
through their individual temperature dependences, and 
is comparatively small. 

No theory exists at present which would predict 
maximum stable growth rates at very high flow rates 
and supersaturations. It is a complex problem since any 
of the surface kinetic processes mentioned above can 
dominate in various solute-solvent systems. 

Only one aspect of the relation between surface 
kinetics and the stable growth rate will be discussed 
here, namely, the improvement in crystal quality as 
growth proceeds at a constant, slow cooling rate. 
Spontaneous nucleation (and the resulting dendritic 
growth) as well as the initial growth on a seed crystal 
inevitably result in a high concentration of defe~ts 
such as dislocations and low-angle and twin boundaries. 
The concentration of these defects tends to decrease 
as stable growth proceeds 19). This has been frequently 
observed with crystals grown from aqueous and especi­
ally from high-temp~rature solutions: crystals spon­
taneously nucleated at the beginning of the cooling 
program show many growth hillocks on their surfaces 
when they are small, whereas on crystals grown to 
large size (above I cm3

) often one or a few growth cen­
ters control one complete face. In accordance with 
Burton, Cabrera and Frank 20

) this fact can be explain­
ed by rearrangement of the dislocations. The most 
active growth centers20

) become dominant, and a small 
growth rate is observed. This effect would have to be 
taken into account in a theory which would predict 
quantitatively the maximum stable growth rate limited 
by surface kinetics. An interesting question is still 
whether crystals growing continuously with the maxi­
mum stable growth rate would also show the decrease 
of growth hillocks, since this decrease has been obser­
ved on crystals almost certainly grown at lower than 
the critical rate. 

So far the effect of the temperature gradient on stable 
growth has not been discussed, since quite often the 
growing crystals are immersed in the solutions and 
therefore are exposed to small temperature gradients. 
However by cooling the crystal either through the 
crucible wall or by pulling it out of the solution, the 
interface stability is increased due to the constitutional 
supercooling criterion 16.21 - 23). If crystal cooling is 
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combined with high solution flow rates, relatively fast 
stable growth rates can be achieved 15 - I 8.23). 

3. Temperature program for stable growth 

The temperature program is obtained by integration 
of eq. (5) with the appropriate temperature dependence 
of the various terms included. The diffusion coefficient 

will vary exponentially with temperature with an acti­
vation energy of about 20 kJ/mole, and so its effect will 
be relatively small since it is much less than that due to 
non-linearity of the solubility curve. PD will have a 
similar temperature dependence and its effect will be 
even smaller ~ince it appears as the t power. Pc will 
change only by a few percent over the range considered, 

and for simplicity we ignore any temperature dependen­
ce of II. It is further assumed that stable growth occurs 
at constant supersaturation, which implies that some 
interface stability condition exists which breaks down 
if a exceeds some critical value, as mentioned above. 
With these assumptions, integration gives 

1.28 Dua2 
2 

t 
P6Pc 

(
' dm (I 1 ) 

• , = 0 Il~- = V n( T) - no ' 
(7) 

since 11 = ml V. Here n( T) is the solubility at temperature 
T, 110 the solubility at the commencement of the pro­
gram, and V the volume of the solution. 

As an example of the application of eq. (7), consider 
a crucible of 100 cm 3 capacity which is 80°,: full of 

solution. If the densities of the crystal and the solution 
are both 5 g cm- 3 and the solubility is 15°,: at 1600 K 

and 5 o~: at 1300 K, the result of an idealized cooling 
experiment for a crystal of cubic shape will be a single 
crystal of mass 40 g and side 2 cm. Curve III of fig. I 
shows the calculated cooling program for an ideal 
solution and with D = 10- 5 cm 2 S-I, (] = 10- 2

, 

PI) = 420 (" = 2.1 cpoise) and u = 10 cm S-I. 

The deviation of the calculated program from a 
linear plot (II of fig. I) with a constant cooling rate 
of 1.3 'C hr- I is quite small. According to the calcula­
tion, the cooling rate should be increased to 1.75 'C 
hr- I in the middle of the range but slower cooling 

rates should be used at the beginning and at the end 
of the program. This result conflicts strongly with the 
13 program which is shown on fig. I as curve I for a 
constant growth rate of 275 A s - I. The final cooling 
rate in the latter case is 16.6 (C hr- I which differs from 

our value by a factor of 13. It should be remembered 

• TEMPERATURE (K) 

1600 ~ 
I'" . 
! , , ....... 

1500 ~ '\~,:m: 
I 

\ ............ 
\ n', 

I \1 '" 1400 - . ...... 
! \ ~ 

I 

\ 

1300 +-----'---'---- l~_--l_~ 
o 40 80 120 160 200 240 

TIME (HOURS) 

Fig. I. Temperature programs for flux growth by slow cooling. 
(I) For constant linear growth rate; (II) constant cooling rate; 
(I II) for maximum stable growth rate according to eq. (7). 

that the temperature dependence of the diffusion 
coefficient, viscosity, interface kinetics, etc. have been 
neglected. An even greater discrepancy would result if 
these factors were included. 

The change in linear growth rate corresponding to 
the use of the calculated program is plotted in fig. 2 as 

curve III. It is seen that the required decrease in the 
growth rate over the whole range is by a factor of four 
in our example. This factor depends on various para­
meters and will be discussed in the last section. The 
reduction of the growth rate is significant compared 
to the constant linear growth rate proposed by several 
authors 1- 5) and shown as line I in fig. 2. Curve II 
gives the linear growth rate for the case of a constant 
cooling rate of 1.3 "C hr- I and shows very high values 

at the beginning of the experiment corresponding to 
rapid, dendritic growth. Fig. 2 illustrates clearly the 
importance of a very slow cooling rate during the first 
few hours following nucleation. 

A similar form for the temperature program may be 
calculated for volume diffusion limited growth using 
the formula for the thickness of the solute diffusion 
boundary layer given by Carlson I I) and by Bennema 24), 

() = [2 ( 11 )! (PsU)t] -I 

3 PsD "X 
(8) 

The numerical factor in this equation is different from 
0.463 used by Carlson II) to derive eq. (2) and which 

was ch03en in our former calculation. Apart from this 
difference (8) gave the same result as (7), as expected. 

An example of a transition from stable to unstable 
growth which was produced by increasing the cooling 
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TIME (HOURS) 

ig. 2. Linear growth rate for the cooling program (1)- (111) of 
fig. I. Da h-dotted line 1, da hed cur e n olid curve 111. 

rate at a relatively late tage in the development of the 
cry tal i hown in fig. 3. Thi shows a view through a 
ection of one of two gadolinium aluminate cry tal 

which were grown in a 140cm3 crucible by the accelerat­
ed crucible rotation technique I5 ,25.26). In thi 

experiment a rather high initial cooling rate of 0.6 ° 
hr - 1 w u ed and the inner zone of the cry tal which 
appear dark with bright inc1u ion i characteri tic of 
rapid, dendriti.c growth. Thi tage was followed by a 
period of table growth at the _ame cooling rate until 
at the tage corresponding to the po it ion indicated by 
the arrow in fig. 3, the cooling rate wa increa ed to 

1.2 °C hr- 1. Thi change re ulted in a zone of un table 

growth with a high concentration of inclu ions since 
the I.ope of the cooling curve in thi region wa higher 
than the maximum predicted value for stable growth. 
The outermo t zone of the cry tal i again inc1u ion­
free, indicating that the maximum cooling rate for 
table growth changed in thi particular y tem to a 

value above 1.2 °C hr - 1 ju t before the termination of 
growth. 

4. eeding and pontaneou nucleation 

The temperature program outlined above ha to be 
matched to the type of experiment and hould be modi­
fied according to whether eed cry tal are u ed or the 
cry tallization proce tart after pontaneou nuc1ea­
tion. 

For eeding, the liquidu curve ha to be known 0 

that the eed i not di olved but only etched before 
cry tal growth tart. The cooling program ha then 
to take into account the size of the eed which ha a 
major effect on the initial cooling rate becau e of it 
relatively large urface area. For example, if the eed i 
J em in length or 6 cm2 in area the initial cooling rate 
for table growth i 1.53 °C hr - 1. The corresponding 
linear growth rate i then 254 A - .1. Thu the applica­
tion of seed cry~ tal allow the elimination of the 
initial part of the program in which very low cooling 

Fig. 3. Corner of a flu -grown gadolinium aluminate crystal 
grown partially in unstable and table regime (cale in mm). 
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rates are required, and so leads to considerable saving 

in experimental time. 
In most flux-growth experiments no seed crystals are 

used. Spontaneous nucleation occurs by slow cooling 
through the metastable region below the liquidus. This 
metastable temperature range is frequently called the 
Ostwald-Miers region and in high-temperature solu­
tions has a typical width of 1-30 nc. Generally, spon­
taneous nucleation will yield many crystals, particularly 
when an effective means of localization is not available. 
The initial small size of the crystal has been considered 
in the temperature program described and particularly 
in the (3 law which requires a very slow cooling rate at 
the beginning of the cooling experiment. It has been 
argued by Laudise27 ) that cooling rates which are not 
at least comparable with the temperature fluctuations 
due to inaccurate regulation are pointless. A very slow 
initial cooling rate is also impractical when the super­
solubility curve is not known with sufficient accuracy 
so that crystallization is not reached in a reasonable 
time. Since the object of a crystal-growth experiment 
is to grow a small number of large crystals in a reason­
ably short time, cooling procedures are proposed which 
allow a selection of the nuclei even when means of 
precise localization of nucleation are not available. 
The principle is shown in fig. 4. After the mixture of 
solvent and solute has been held for sufficient time 
(typically 15 hr) at a temperature A, 50 (JC above the 

liquidus T L' to ensure complete dissolution, the tem­
perature is lowered to B = T L where cooling at about 
I "c hr- 1 is commenced. When the point C is reached 
the temperature is raised to D, approximately I-5°C 
below T L , so that many of the nuclei formed below the 

TEMPERATURE (K) 

1650 A 

B 
1600 . r--
1550f '-____ c_--"---_c_

1 ~ __ ~~ ___ 

24 48 72 96 :20 T:r:~ 

(f-<CL;~S) 

Fig. 4. Temperature programs for minimization of the number 
of crystallites formed on nucleation: A .. ~ F when liquidus tem­
perature TL and limit of metastable region TM are known; A ~~ J 
when these are known only approximately. 

metastable region (T L to TM ) are dissolved and a small 
number of nuclei (ideally one) will remain. This selec­
tion process may take some time (to E) after which 
the programmed cooling should start. This type of 
nucleation control can only be used when the liquidus 
as well as the critical undercooling are precisely known. 
The necessary knowledge can be readily obtained by 
the thermogravimetric method of Smith and Elwell 28 ) 
for nonvolatile solvents. 

Often exact data are not available, expecially with 
volatile solvent.;, and T L is then guessed by trial ex­
periments. In this case the procedure according to the 
dotted line in fig. 4 is proposed. After initial soaking 
at A and cooling to C, the cycle of heating to G and 
slow cooling to C', heating to a lower temperature H 
and cooling to C", and so forth is continued until the 
upper point (J) is expected to lie below the liquidus, 
and then the temperature programming is commenced. 
In a number of experiments for the growth of GdAI03, 

LaAI03, Y 3A15012' Y 3Fe5012 :Ga, and GdV04 this 
selection proced ure had a beneficial effect. I n order to 
suppress continuous nucleation during the later stages 
of the slow cooling experiment, a homogeneous solu­
tion should be produced by stirring, as discussed by 
Scheel 1 5.16) and by Scheel and Schulz-DuBois25 ). On 

the other hand stirring has the disadvantage that it 
narrows the width of the metastable region. 

Hintzmann and Miiller-Vogt29 ) proposed an oscilla­
tory cooling curve during the entire cooling program 
with an amplitude of 20 'c, a period of 8 min, and an 
average temperature slope of 2 'C hr- I. The resulting 

crystals of rare-earth orthophosphates, arsenates and 
vanadates were small and of bad quality. This one 
would expect since the rate of growth during the cooling 
half-cycles must be excessive for stable growth unless 
crystallization occurs at extremely low rates over a 
period of several months. We therefore propose the 
use of an oscillating temperature only at the start of 
the cooling program for the purpose of reducing the 
number of nuclei. 

5. Experimental yariables and the attainment of stable 
growth . 

The factors which influence the maximum stable 
growth rate by limiting the transport of solute are 
summarized in table I. Other factors such as the tem­
perature gradient at the interface and also the increas-
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TABLE I 

Factors influencing the maximum stable growth rate 

Transport-limiting experimental 
parameters 

Affected by Description 

Solute concentration Phase diagram and temperature Eq. (6) and section 2 

Mass deposition rate Volume of the solution (crucible size) and by the degree Eq. (5) and sections I, 2 
of supersaturation through cooling rate (possibly also through and 4 and in the 
evaporation rate or gradient transport rate) following 

Crystal surface area (boundary layer 
thickne.;s) 

Spontaneous nucleation or seed crystal, and by total 
growth and by the habit 

Eq. (6) and sections 
1,2 and 4 

Solution flow rate Degree of convection or stirring Section 2 and in the 
following 

Material parameters (viscosity, 
diffusion coefficient, densities of solute 
and solution) 

Temperature 

ing crystal quality during growth have been discussed 
in section 2. 

The effect of viscosity, solution flow rate and crucible 
size on the maximum stable growth rate and therefore 
on the temperature program is illustrated with a few 
examples in fig. 5. The viscosity values of 2 and 20 
cpoise are typical for such fluxes as PbO-PbF2 and 
PbO-B20 3, respectively30). Solution flow rates of 10 
and 0.1 cm s - 1 correspond respectively to the condi­
tions pertaining with a good degree of stirring I5 .16) 
and with natural convection6.1 5.16). A melt volume of 

80 cm3 is an average value for general experiments and 
4000 cm3 is approximately the largest crucible which 
has been used for flux growth [Van Uitert et a1. 31 ) used 
eight liter crucibles]. 

The most important parameter which can be derived 
from fig. 5 is the total duration of a crystal-growth 

+ TEMPERATURE (K) 
1600 r-I --_~~ ___ -==-__ -. 

1500 

1400 :­
I 
I 

1300+-i --~ 
o 

u = 0.1 cm·s- I 

"'I: 20 cp 
v: 4000crJ 

.-1_L...L._--'- ~'-----' !IME 

2 3 4 5 
log! (hr)-

Fig. 5. Temperature programs according to eq. (7) for various 
values of viscosity II, solution flow rate u and solution volume V. 

section 2 and in the 
following 

experiment. A value of 103 hr or 6 weeks is fairly 
typical while twice this value would normally be con­
sidered prohibitive. It can be seen from the examples 
illustrated that experiments of reasonable duration for 
the stable growth of one crystal are possible only in 
stirred solutions. The period calculated for an unstirred 
solution would be less than 2000 hr only for a flux of 
low viscosity and a solution volume of less than 80 cm3. 
The periods calculated for the large solution volume 
with stirring are clearly shown to be excessively long, 
and unstable growth as well as multinucleation must 
result. On the other hand when allowance is made fOl 
initial multinucleation and dendritic growth or when 
large seed crystals of a size appropriate for the crucible 
size are used, the cooling program may be shortened as 
was mentioned in section 4. 

The effect of the flux viscosity, though appreciable, 
is shown to be less important than the other parameters 
considered. However, the rate of solution flow by 
natural convection is likely to be much less than 0.1 
cm s - 1 in a very viscous flux. 

The program specified by eq. (7) was calculated on 
the basis that the growth rate should have its maximum 
stable value at all temperatures. In practice it is clearly 
desirable to use a growth rate which is less than the maxi­
mum value by some appreciable margin, particularly 
since the temperature regulation possible with the best 
commercial controllers is not much better than ± 0.1 
°e at 1200 °e. In the example considered in section 3, 
a sudden temperature drop of only 0.1 °e will result 
in the deposition of about 13 mg of solute. If this drop 
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were to occur in 10 s on a crystal of total area 1 cm2
, 

the resulting growth rate would be 26000 A s - 1 which 
is enormously greater than the maximum stable rate. 
In practice, the effect of this drop will not be so drastic 
since the resulting supersaturation is created through­
out the melt rather than at the crystal surface, but on 
the other hand temperature variations of several times 
0.1 °C are common with simple regulation and pro­
gramming and in unstirred melts due to thermal con­
vection. This example indicates the importance of good 
temperature regulation and also of a "safety margin" 
in the temperature program actually used. The tempera­
ture regulation and the cooling rate have to be adjusted ill 
such a way that the slope of the effective cooling curve 
(including any oscillations or fluctuations) never exceeds 
the slope of the calculated cooling curve for stable 
growth at the corresponding temperature. 

Fig. 6 (curve I) shows the cooling rate for the maxi­
mum growth rate using the data corresponding to the 
most rapid cooling program of fig. 5 (u = 10 cm s - 1, 

'1 = 2 cpoise, V = 80 cm3
). Unless a computer is used 

for process control, a continuous change in the cooling 
rate due to curve I is not easily achieved. Therefore a 
less ideal procedure indicated by the dotted line II is 
suggested. Apart from the first few hours where ex­
tremely slow growth rates are required by the calculated 
program, this procedure allows a reasonable margin 
against temperature fluctuations. The actual values of 
the cooling rate proposed are as follows: 0.2 °C hr- 1 

for 48 hr, 0.5 °C hr- 1 for 24 hr, and 1.2 °C hr- 1 for the 

remainder of the growth period, i.e., about 221 hr. The 
total time of nearly 300 hr for the proposed cooling 

(OC 'hr- I ) 

1.5 

n t 

COOLING RATE 

r-----------------
I 

10 : 
I 
I 
I 
I 

0.5 r-...J 
I 
I ____ ...J 

o 40 

ill 

80 120 160 200 TIME (hr) 

Fig. 6. Cooling rates for stable growth: (I) for a stirred solution, 
(II) suggested experimental procedure; and (III) for an un­
stirred solution. 

program exceeds the minimum required by the theory 
by about 25 ~;;:. An extra 60 hr or so will of course be 
required for the nucleation procedure outlined in 
section 4. 

Shown as curve I II of fig. 6 is the cooling rate re­
quired by the program of eq. (7) for the same conditions 
but with an unstirred melt, i.e., with an assumed 
solution flow rate of 0.1 cm s - 1 with '1 = 2 cpoise and 

V = 80 cm 3
• The maximum value of the cooling rate 

is I/lOth that of curve I, i.e., 0.175 °C hr- 1
, and the 

total time required by the program is about 2400 hr. 
Since such a long period would be regarded as unaccep­
table by most crystal growers, we propose the use of a 
constant cooling rate of 0.3 °C hr- 1 or preferably 0.2 °C 
hr- 1 (provided that the temperature is regulated to 

better than ± 0.1 °C) for the whole growth period 
following the nucleation procedure. Although such a 
program will produce more than one crystal, a relative­
ly small number of crystals should result and these 
should contain a substantial portion of inclusion-free 
regions. 

An uncertainty in the above calculations exists since 
no determination of the maximum stable growth rate 
has yet been made on any crystal growing from a high­
temperature solution. Presumably this rate is depen­
dent on the individual solute-solvent system with its 
many chemical and physical parameters, and on im­
purities. Therefore it has to be determined experimen­
tally. One single determination at one temperature 
should be sufficient for the whole program to be cal­
culated. In the absence of exact measurements, the 
values of 200-300 A s - 1 for stirred solutions and 60 A 
s - 1 for unstirred solutions may be taken on the basis 
of previous growth experiments 1 s). 

The analysis of the stable growth rate and the pro­
posed temperature programming have been worked out 
for high-temperature solutions. However the principles 
are applicable to growth from solutions generally. 
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